Advertisement

An Integrated Constraint Programming Approach to Scheduling Sports Leagues with Divisional and Round-Robin Tournaments

  • Jeffrey Larson
  • Mikael Johansson
  • Mats Carlsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8451)

Abstract

Previous approaches for scheduling a league with round-robin and divisional tournaments involved decomposing the problem into easier subproblems. This approach, used to schedule the top Swedish handball league Elitserien, reduces the problem complexity but can result in suboptimal schedules. This paper presents an integrated constraint programming model that allows to perform the scheduling in a single step. Particular attention is given to identifying implied and symmetry-breaking constraints that reduce the computational complexity significantly. The experimental evaluation of the integrated approach takes considerably less computational effort than the previous approach.

Keywords

Constraint Programming Symmetry Breaking Constraint Constraint Program Approach Travel Tournament Problem Implied Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems. In: Proceedings CPAIOR, vol. 1, pp. 15–26 (2001)Google Scholar
  2. 2.
    Briskorn, D.: Sports Leagues Scheduling. Lecture Notes in Economics and Mathematical Systems, vol. 603. Springer (2008)Google Scholar
  3. 3.
    Easton, K., Nemhauser, G.L., Trick, M.A.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Fronček, D., Meszka, A.: Round robin tournaments with one bye and no breaks in home-away patterns are unique. In: Multidisciplary Scheduling: Theory and Applications, pp. 331–340. MISTA, New York (July 2005) ISSN 2305-249XGoogle Scholar
  5. 5.
    Henz, M.: Scheduling a major college basketball conference—revisited. Operations Research 49(1), 163–168 (2001)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Henz, M., Müller, T., Thiel, S.: Global constraints for round robin tournament scheduling. European Journal of Operational Research 153(1), 92–101 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Larson, J., Johansson, M.: Constructing schedules for sports leagues with divisional and round-robin tournaments. Journal of Quantitative Analysis in Sports (to appear, 2014) doi:10.1515/jqas-2013-0090Google Scholar
  8. 8.
    Perron, L.: Alternate modeling in sport scheduling. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 797–801. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Rasmussen, R.V., Trick, M.A.: Round robin scheduling - a survey. European Journal of Operational Research 188(3), 617–636 (2008)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Rasmussen, R.: Scheduling a triple round robin tournament for the best Danish soccer league. European Journal of Operational Research 185, 795–810 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: 12th National Conference on Artificial Intelligence (AAAI-1994), pp. 362–367 (1994)Google Scholar
  14. 14.
    Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Clancey, W.J., Weld, D.S. (eds.) AAAI/IAAI, vol. 1, pp. 209–215. AAAI Press / The MIT Press (1996)Google Scholar
  15. 15.
    Régin, J.-C.: The symmetric alldiff constraint. In: Dean, T. (ed.) IJCAI, pp. 420–425. Morgan Kaufmann (1999)Google Scholar
  16. 16.
    Régin, J.-C.: Minimization of the number of breaks in sports scheduling problems using constraint programming. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 57, 115–130 (2001)Google Scholar
  17. 17.
    Ribeiro, C., Urrutia, S.: Scheduling the Brazilian soccer tournament with fairness and broadcast objectives. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 147–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Russell, R.A., Urban, T.L.: A constraint programming approach to the multiple-venue, sport-scheduling problem. Computers & Operations Research 33(7), 1895–1906 (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Schaerf, A.: Scheduling sport tournaments using constraint logic programming. Constraints 4(1), 43–65 (1999)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Trick, M.A.: A schedule-then-break approach to sports timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 242–253. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Trick, M.A.: Integer and constraint programming approaches for round-robin tournament scheduling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 63–77. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jeffrey Larson
    • 1
    • 2
  • Mikael Johansson
    • 1
  • Mats Carlsson
    • 3
  1. 1.Automatic Control LabKTHStockholmSweden
  2. 2.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA
  3. 3.SICSKistaSweden

Personalised recommendations