Improving Diffusion-Based Molecular Communication with Unanchored Enzymes
Conference paper
First Online:
- 2 Citations
- 1 Mentions
- 580 Downloads
Abstract
In this paper, we propose adding enzymes to the propagation environment of a diffusive molecular communication system as a strategy for mitigating intersymbol interference. The enzymes form reaction intermediates with information molecules and then degrade them so that they have a smaller chance of interfering with future transmissions. We present the reaction-diffusion dynamics of this proposed system and derive a lower bound expression for the expected number of molecules observed at the receiver. We justify a particle-based simulation framework, and present simulation results that show both the accuracy of our expression and the potential for enzymes to improve communication performance.
Keywords
Molecular communication Reaction-diffusion system Intersymbol interference NanonetworkReferences
- 1.Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 3rd edn. Garland Science, New York (2010)Google Scholar
- 2.Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw. 52(12), 2260–2279 (2008)CrossRefGoogle Scholar
- 3.Nakano, T., Moore, M.J., Wei, F., Vasilakos, A.V., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012)CrossRefGoogle Scholar
- 4.Nelson, P.: Biological Physics: Energy, Information, Life, 1st edn. W. H. Freeman and Company, New York (2008)Google Scholar
- 5.Hiyama, S., Moritani, Y.: Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun. Netw. 1(1), 20–30 (2010)CrossRefGoogle Scholar
- 6.Atakan, B., Akan, O.B.: Deterministic capacity of information flow in molecular nanonetworks. Nano Commun. Netw. 1(1), 31–42 (2010)CrossRefGoogle Scholar
- 7.Mahfuz, M.U., Makrakis, D., Mouftah, H.T.: Characterization of intersymbol interference in concentration-encoded unicast molecular communication. In: Proceedings of 2011 IEEE CCECE, pp. 164–168, May 2011Google Scholar
- 8.Einolghozati, A., Sardari, M., Beirami, A., Fekri, F.: Capacity of discrete molecular diffusion channels. In: Proceedings of 2011 IEEE ISIT, pp. 723–727, August 2011Google Scholar
- 9.Chou, C.T.: Molecular circuits for decoding frequency coded signals in nano-communication networks. Nano Comm. Netw. 3(1), 46–56 (2012)CrossRefGoogle Scholar
- 10.Nakano, T., Okaie, Y., Vasilakos, A.V.: Throughput and efficiency of molecular communication between nanomachines. In: Proceedings of 2012 IEEE WCNC, pp. 704–708, April 2012Google Scholar
- 11.Miorandi, D.: A stochastic model for molecular communications. Nano Commun. Netw. 2(4), 205–212 (2011)CrossRefGoogle Scholar
- 12.Moore, M.J., Suda, T., Oiwa, K.: Molecular communication: modeling noise effects on information rate. IEEE Trans. Nanobiosci. 8(2), 169–180 (2009)CrossRefGoogle Scholar
- 13.Naka, T., Shiba, K., Sakamoto, N.: A two-dimensional compartment model for the reaction-diffusion system of acetylcholine in the synaptic cleft at the neuromuscular junction. Biosystems 41(1), 17–27 (1997)CrossRefGoogle Scholar
- 14.Cheng, Y., Suen, J.K., Radi, Z., Bond, S.D., Holst, M.J., McCammon, J.A.: Continuum simulations of acetylcholine diffusion with reaction-determined boundaries in neuromuscular junction models. Biophys. Chem. 127(3), 129–139 (2007)CrossRefGoogle Scholar
- 15.Chang, R.: Physical Chemistry for the Biosciences. University Science Books, Sausalito (2005)Google Scholar
- 16.Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A 188(13), 404–425 (1992)CrossRefMathSciNetGoogle Scholar
- 17.Pierobon, M., Akyildiz, I.F.: Information capacity of diffusion-based molecular communication in nanonetworks. In: Proceedings of 2011 IEEE INFOCOM 2011, pp. 506–510, April 2011Google Scholar
- 18.Pierobon, M., Akyildiz, I.F.: A physical end-to-end model for molecular communication in nanonetworks. IEEE J. Sel. Areas Commun. 28(4), 602–611 (2010)CrossRefGoogle Scholar
- 19.Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 2nd edn. Birkhaeuser, Boston (2005)CrossRefzbMATHGoogle Scholar
- 20.Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58(1), 35–55 (2007)CrossRefGoogle Scholar
- 21.Iyengar, K.A., Harris, L.A., Clancy, P.: Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm. J. Chem. Phys. 132(9), 094101 (2010)CrossRefGoogle Scholar
- 22.Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1(3), 137 (2004)CrossRefGoogle Scholar
- 23.Bernstein, D.: Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys. Rev. E 71(4), 041103 (2005)CrossRefMathSciNetGoogle Scholar
Copyright information
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014