Abstract

The goal of this paper is to present the idea of creating reference database of RGB-D video recordings for recognition of facial expressions and emotions. Two different formats of the recordings used for creation of two versions of the database are described and compared using different criteria. Examples of first applications using databases are also presented to evaluate their usefulness.

Keywords

facial expressions recognition affective computing multimodal databases Microsoft Kinect RGB-D data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alyüz, N., Gökberk, B., Dibeklioğlu, H., Savran, A., Salah, A.A., Akarun, L., Sankur, B.: 3D face recognition benchmarks on the Bosphorus database with focus on facial expressions. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 57–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bailenson, J., Pontikakis, E., Mauss, I., Gross, J., Jabon, M., Hutcherson, C., Nass, C., John, O.: Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies 66, 303–317 (2008)CrossRefGoogle Scholar
  3. 3.
    Burgin, W., Pantofaru, C., Smart, W.: Using depth information to improve face detection. In: Proc. of the 6th Int. Conf. on Human-Robot Interaction, pp. 119–120 (2011)Google Scholar
  4. 4.
    Castrillon-Santana, M., Deniz-Suarez, O., Anton-Canalis, L., Lorenzo-Navarro, J.: Face and facial feature detection evaluation - performance evaluation of public domain Haar detectors for face and facial feature detection. In: Third Int. Conf. on Computer Vision Theory and Applications, VISAPP 2008, pp. 167–172 (2008)Google Scholar
  5. 5.
    Colombo, A., Cusano, C., Schettini, R.: UMB-DB: A database of partially occluded 3D faces. In: Proc. of ICCV 2011 Workshops, pp. 2113–2119 (2011)Google Scholar
  6. 6.
    Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Psychologist Press (1978)Google Scholar
  7. 7.
    Grgic, M., Delac, K.: Face Recognition Homepage (March 02, 2014), http://www.face-rec.org/databases/
  8. 8.
    Gunes, H., Piccardi, M.: Affect recognition from face and body: Early fusion vs. late fusion. In: Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 3437–3443 (2005)Google Scholar
  9. 9.
    Huynh, T., Min, R., Dugelay, J.-L.: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 133–145. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Kolakowska, A.: A review of emotion recognition methods based on keystroke dynamics and mouse movements. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 548–555 (2013)Google Scholar
  11. 11.
    Kshirsagar, V., Baviskar, M., Gaikwad, M.: Face recognition using eigenfaces. In: Proc. of the 3rd Int. Conf. on Computer Research and Development (ICCRD), pp. 302–306 (2011)Google Scholar
  12. 12.
    Landowska, A.: Affect-awareness framework for intelligent tutoring systems. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 540–547 (2013)Google Scholar
  13. 13.
    Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade (CK+): A complete dataset for action unit and emotion-specified expression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Workshops), pp. 94–101 (2010)Google Scholar
  14. 14.
    Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 1357–1362 (1999)CrossRefGoogle Scholar
  15. 15.
    Moreno, A., Sanchez, A.: GavabDB: A 3D Face Database. In: Proc. of the 2nd COST Workshop on Biometrics on the Internet: Fundamentals, Advances and Applications, pp. 77–82 (2004)Google Scholar
  16. 16.
    Picard, R.: Affective computing: From laughter to IEEE. IEEE Transactions on Affective Computing 1, 11–17 (2010)CrossRefGoogle Scholar
  17. 17.
    Szwoch, M.: FEEDB: a multimodal database of facial expressions and emotions. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 524–531 (2013)Google Scholar
  18. 18.
    Szwoch, W.: Using physiological signals for emotion recognition. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 556–561 (2013)Google Scholar
  19. 19.
    Vizer, L., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features. Int. Journal of Human-Computer Studies 67, 870–886 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Transactions on Multimedia 12, 682–691 (2009)CrossRefGoogle Scholar
  21. 21.
    Wrobel, M.: Emotions in the software development process. In: Proc. of the 6th Int. Conf. on Human System Interaction, pp. 518–523 (2013)Google Scholar
  22. 22.
    Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 39–58 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Intelligent Interactive SystemsGdańsk University of TechnologyGdańskPoland

Personalised recommendations