Advances in Microbial Insect Control in Horticultural Ecosystem

  • Shaohui Wu
  • Gadi V.P. ReddyEmail author
  • Stefan T. Jaronski
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 2)


The use of microbial organisms as biological control agents has progressed significantly since Metschnikoff launched the first attempt at microbial insect control with Metarhizium anisopliae in 1879. Following the lead of Metschnikoff, entomopathogenic nematodes, fungi, bacteria and viruses have been extensively studied for commercialization and practical use as biopesticides in inundative releases against insect pests in various cropping systems. However, compared with chemical insecticides, these microbial products represent less than 2 % of the total insecticide market share. Factors such as control efficacy, cost, formulation, shelf life, application techniques, and persistence have limited the commercial use of these microbial control agents in insect pest management. This review discusses research advances for entomopathogens, especially commercialization, formulation and application techniques, for microbial biocontrol of insect pests in the horticultural ecosystem.


Entomopathogen Microbial biocontrol Biopesticide Horticulture Insect pest 


  1. Akhurst RJ (1990) Safety to nontarget invertebrates of nematodes of economically important pests. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 234–238Google Scholar
  2. Alves SB, Risco SH, Almeida LC (1984) Influence of photoperiod and temperature on the development and sporulation of Metarhizium anisopliae (Metsch.) Sorok. J Appl Entomol 97:127–129Google Scholar
  3. Alves SB, Pereira RM, Lopes RB et al (2003) Use of entomopathogenic fungi in Latin America. In: Upadhyay RK (ed) Advances in microbial control of insect pests. Kluwer, New York, pp 193–211Google Scholar
  4. Amiri B, Ibrahim L, Butt TM (1999) Antifeedant properties of destruxins and their use with the entomogenous fungus Metarhizium anisopliae for improved control of crucifer pests. Biocontrol Sci Technol 9:487–498Google Scholar
  5. Amiri-Besheli B, Khambay B, Cameron S et al (2000) Inter- and intra-specific variation in destruxin production by the insect pathogenic Metarhizium, and its significance to pathogenesis. Mycol Res 104:447–452Google Scholar
  6. Anbesse S, Sumaya NH, Dörfler AV et al (2013) Stabilisation of heat tolerance traits in Heterorhabditis bacteriophora through selective breeding and creation of inbred lines in liquid culture. BioControl 58:85–93Google Scholar
  7. Anke H, Steiner O (2002) Insecticidal and nematicidal metabolites from fungi. In: Esser K, Lemke PA, Bennet JV, Osiewacz HD (eds) The Mycota 10. Industrial applications. Springer, Berlin, pp 109–127Google Scholar
  8. Bagga S, Hu G, Screen SE et al (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169PubMedGoogle Scholar
  9. Bai X, Grewal PS (2007) Identification of two down-regulated genes in entomopathogenic nematode Heterorhabditis bacteriophora infective juveniles upon contact with insect hemolymph. Mol Biochem Parasitol 156:162–166PubMedGoogle Scholar
  10. Bai C, Shapiro-Ilan DI, Gaugler R et al (2004) Effect of EPN concentration on survival during cryopreservation in liquid nitrogen. J Nematol 36:281–284PubMedPubMedCentralGoogle Scholar
  11. Bai C, Shapiro-Ilan DI, Gaugler R et al (2005) Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biol Control 32:220–227Google Scholar
  12. Bai X, Adams BJ, Ciche TA et al (2009) Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. BMC Genomics 10, art. No. 205Google Scholar
  13. Bailey KL, Boyetchko SM, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229Google Scholar
  14. Bartlett MC, Jaronski ST (1988) Mass production of entomogenous fungi for biological control of insects. In: Burge MN (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 61–85Google Scholar
  15. Bateman RP (1999) Delivery systems and protocols for biopesticides. In: Hall FR, Menn JJ (eds) Methods in biotechnology, biopesticides: use and delivery, vol 5. Humana, Totowa, pp 509–528Google Scholar
  16. Bateman R (2007) Production processes for anamorphic Fungi. IPARC, Silwood Park, Ascot, Berks. Accessed 11 Jan 2014
  17. Bateman R, Chapple A (2001) The spray application of mycopesticide formulations. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents. CABI, Wallingford, pp 289–309Google Scholar
  18. Bateman RP, Carey M, Moore D et al (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122:145–152Google Scholar
  19. Bathon H (1996) Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Sci Technol 6:421–434Google Scholar
  20. Begley JW (1990) Efficacy against insects in habitats other than soil. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 215–231Google Scholar
  21. Behle R, Birthisel T (2013) Formulations of entomopathogens as bioinsecticides. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 483–517Google Scholar
  22. Bernier L, Cooper RM, Charnley AK et al (1989) Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiol Lett 60:261–266Google Scholar
  23. Bilgrami AL, Gaugler R, Shapiro-Ilan DI et al (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology 8:397–409Google Scholar
  24. Bixby A, Alm SR, Power K et al (2007) Susceptibility of four species of turfgrass-infesting scarabs (Coleoptera: Scarabaeidae) to Bacillus thuringiensis serovar japonensis strain Buibui. J Econ Entomol 100:1604–1610PubMedGoogle Scholar
  25. Bogo MR, Rota CA, Pinto HJ et al (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr Microbiol 37:221–225PubMedGoogle Scholar
  26. Bonning BC, Hoover K, Duffey S et al (1995) Production of polyhedra of the autographa californica nuclear polyhedrosis virus using the Sf21 and Tn5B1-4 cell lines and comparison with host-derived polyhedra by bioassay. J Invertebr Pathol 66:224–230PubMedGoogle Scholar
  27. Boucias DG, Pendland JC (1998) Principles of insect pathology. Kluwer, DordrechtGoogle Scholar
  28. Bradley CA, Black WE, Kearns R et al (1992) Role of production technology in mycoinsecticide development. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 160–179Google Scholar
  29. Braga GUL, Flint SD, Miller CD et al (2001) Both solar UVA and UVB radiation impair conidial curability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 74:734–739PubMedGoogle Scholar
  30. Bravo A, Likitvivatanavong S, Gill SS et al (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431PubMedPubMedCentralGoogle Scholar
  31. Brousseau C, Charpentier G, Bellonick S (1996) Susceptibility of spruce budworm, Choristoneura fumiferana Clemens, to destruxins, cyclodepsipeptidic mycotoxins of Metarhizium anisopliae. J Invertebr Pathol 68:180–182Google Scholar
  32. Brownbridge M, Saito T, Buitenhuis R et al (2011) Developing a biologically-based IPM program for western flower thrips, Frankliniella occidentalis, in greenhouse floriculture. IOBC/wprs Bull 68:21–24Google Scholar
  33. Buerger P, Hauxwell C, Murray D (2007) Nucleopolyhedrovirus introduction in Australia. Virol Sin 22:173–179Google Scholar
  34. Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, DordrechtGoogle Scholar
  35. Butt TM, Jackson CW, Magan N (2001) Fungi as biological agents. CABI, WallingfordGoogle Scholar
  36. Carbonell LF, Hodge MR, Tomalski MD et al (1988) Synthesis of a gene coding for an insecticide-specific scorpion toxin neurotoxin and attempts to express it using baculovirus vectors. Gene 73:409–418PubMedGoogle Scholar
  37. Carruthers RI, Soper RS (1987) Fungal diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 357–416Google Scholar
  38. Chaston JM, Dillman AR, Shapiro-Ilan DI et al (2011) Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes. Int J Parasitol 41:801–809PubMedPubMedCentralGoogle Scholar
  39. Chavarria-Hernandez N, Espino-Garcia J-J, Sanjuan-Galindo R et al (2006) Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey kinetics and modeling. J Biotechnol 125:75–84PubMedGoogle Scholar
  40. Chavarria-Hernandez N, Ortega-Morales E, Vargas-Torres A et al (2010) Submerged monoxenic culture of the entomopathogenic nematode, Steinernema carpocapsae CABA01, in a mechanically agitated bioreactor: evolution of the hydrodynamic and mass transfer conditions. Biotechnol Bioprocess Eng 15:580–589Google Scholar
  41. Cho EM, Liu L, Farmerie W et al (2006) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152:2843–2854PubMedGoogle Scholar
  42. Cho EM, Kirkland BH, Holder DJ et al (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447PubMedGoogle Scholar
  43. Ciche TA (2007) The biology and genome of Heterorhabditis bacteriophora. In: WormBook (ed) The C. elegans research community, WormBook. doi/10.1895/wormbook.1.135.1. Accessed 20 Feb 2007
  44. Coles RB (1980) The biology of Cordyceps aphodii (Sphaeriales: Clavicipitaceae). In: Crosby TK, Pottinger RP (eds) Proceedings of the 2nd Australasian conference on grassland invertebrate ecology. Palmerston North, New Zealand, pp 207–212Google Scholar
  45. Copping LG (2001) The biopesticide manual, 2nd edn. British Crop Protection Council, FarnhamGoogle Scholar
  46. Cory JS, Franklin MT (2012) Evolution and the microbial control of insects. Evol Appl 5:455–469PubMedPubMedCentralGoogle Scholar
  47. Cottrell TE, Shapiro-Ilan DI, Horton DL et al (2011) Laboratory virulence and orchard efficacy of entomopathogenic nematodes toward the lesser peachtree borer (Lepidoptera: Sesiidae). Environ Entomol 104:47–53Google Scholar
  48. Couch TL, Jurat-Fuentes JL (2013) Commercial production of entomopathogenic bacteria. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 415–435Google Scholar
  49. Crangle RD (2011) Diatomite. 2011 minerals yearbook. U.S. Geological Survey, Washington, DC. Accessed 26 Nov 2013
  50. Creighton CS, Fassuliotis G (1985) Heterorhabditis sp. (Nematoda: Heterorhabditidae): a nematode parasite isolated from the banded cucumber beetle Diabrotica balteata. J Nematol 17:150–153PubMedPubMedCentralGoogle Scholar
  51. Crickmore N, Zeigler DR, Feitelson J et al (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813PubMedPubMedCentralGoogle Scholar
  52. Crickmore N, Baum J, Bravo A et al (2013) Bacillus thuringiensis toxin nomenclature. Accessed 7 Jan 2014
  53. Data Requirements (2007) Data requirements for biochemical and microbial pesticides. 40 CFR Part 158.
  54. De Faria M, Wraight S (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256Google Scholar
  55. Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 79–98Google Scholar
  56. Dutky SR (1959) Insect microbiology. Adv Appl Microbiol 1:175–200PubMedGoogle Scholar
  57. Ehlers RU (2005) Forum on safety and regulation. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biological control agents. CABI, Wallingford, pp 107–114Google Scholar
  58. Ekesi S, Maniania NK, Ampong-Nyarko K (1999) Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci Technol 9:177–185Google Scholar
  59. Elena GJ, Beatriz PJ, Alejandro P et al (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27Google Scholar
  60. El-Salamouny S, Ranwala D, Shapiro M et al (2009) Tea, coffee, and cocoa as ultraviolet radiation protectants for the beet armyworm nucleopolyhedrovirus. J Econ Entomol 102:1767–1773PubMedGoogle Scholar
  61. Evans HC (1989) Mycopathogens of insects of epigeal and aerial habitats. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic, London, pp 205–238Google Scholar
  62. Fang W, Leng B, Xiao Y et al (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370PubMedPubMedCentralGoogle Scholar
  63. Faria M, Hajek AE, Wraight SP (2009) Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biol Control 51:346–354Google Scholar
  64. Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol 4:3–34Google Scholar
  65. Ferron P (1971) Problèmes poses par la mise au point d’un procédé de lutte microbiologique contre Melolontha melolontha au moyen de la mycose à Beauveria brongniartii (Delacr.) Siemaszko. Phytiatrie-Phytopharmacie 10:159–168Google Scholar
  66. Ferron P (1985) Fungal control. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, Oxford, pp 313–346Google Scholar
  67. Ferron P, Fargues J, Riba G (1991) Fungi as microbial insecticides against pests. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology, vol 2: humans, animals, and insects. Dekker, New York, pp 665–706Google Scholar
  68. ffrench-Constant RH, Waterfield N, Daborn P (2010) Insecticidal toxins from Photorhabdus and Xenorhabdus. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Academic, Oxford, pp 313–327Google Scholar
  69. Forst S, Dowds B, Boemare N et al (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72PubMedGoogle Scholar
  70. Freimoser FM, Hu G, St Leger RJ (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371PubMedGoogle Scholar
  71. Furlong MJ, Pell JK, Reddy GVP (1997) Premortality effects of Zoophthora radicans infection in Plutella xylostella. J Invertebr Pathol 70:214–220PubMedGoogle Scholar
  72. Gaugler R (1981) Biological control potential of neoaplectanid nematodes. J Nematol 13:241–249PubMedPubMedCentralGoogle Scholar
  73. Gaugler R (1987) Entomogenous nematodes and their prospects for genetic improvement. In: Maramorosch K (ed) Biotechnology in invertebrate pathology and cell culture. Academic, San Diego, pp 457–484Google Scholar
  74. Gaugler R (1988) Ecological considerations in the biological control of soil-inhabiting insect pests with entomopathogenic nematodes. Agric Ecosyst Environ 24:351–360Google Scholar
  75. Gaugler R, Campbell JF (1991) Selection for enhanced host-finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environ Entomol 20:700–706Google Scholar
  76. Gaugler R, Georgis R (1991) Culture method and efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Biol Control 1:269–274Google Scholar
  77. Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC, Boca RatonGoogle Scholar
  78. Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 173–194Google Scholar
  79. Georgis R, Gaugler R (1991) Predictability in biological control using entomopathogenic nematodes. J Econ Entomol 84:713–720Google Scholar
  80. Georgis R, Hague NGM (1991) Nematodes as biological insecticides. Pestic Outlook 2:29–32Google Scholar
  81. Georgis R, Manweiler SA (1994) Entomopathogenic nematodes: a developing biological control technology. Agric Zool Rev 6:63–94Google Scholar
  82. Georgis R, Kaya HK, Gaugler R (1991) Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on nontarget arthropods. Environ Entomol 20:815–822Google Scholar
  83. Georgis R, Koppenhöfer AM, Lacey LA et al (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123Google Scholar
  84. Glare TR (1992) Fungal pathogens of scarabs. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, pp 63–77Google Scholar
  85. Glare TR, Milner RJ (1991) Ecology of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji LG (eds) Handbook of applied mycology, vol 2: humans, animals, and insects. Marcel Dekker, New York, pp 547–612Google Scholar
  86. Glazer I (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 169–187Google Scholar
  87. Goettel MS, St. Leger RJ, Bhairi S et al (1990) Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Curr Genet 17:129–132Google Scholar
  88. Goettel MS, Eilenberg J, Glare T (2010) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Academic, Oxford, pp 387–431Google Scholar
  89. González JM Jr, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955PubMedPubMedCentralGoogle Scholar
  90. Grewal PS, Koppenhöfer AM, Choo HY (2005) Lawn, turfgrass and pasture applications. In: Grewal PS, Ehlers R-U, Shapiro-Ilan D (eds) Nematodes as biocontrol agents. CABI, Wallingford, pp 115–146Google Scholar
  91. Gröner A (1990) Safety to nontarget invertebrates of baculoviruses. In: Laird M, Lacey L, Davidson E (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 135–147Google Scholar
  92. Haase S, Ferrelli L, Pidre ML et al (2013) Genetic engineering of baculoviruses. In: Romanowski V (ed) Current issues in molecular virology—viral genetics and biotechnological applications. InTech, Croatia, pp 79–111Google Scholar
  93. Hajek AE (1997a) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in Central New York. Biol Control 10:58–68Google Scholar
  94. Hajek AE (1997b) Ecology of terrestrial fungal entomopathogens. Adv Microb Ecol 15:193–249Google Scholar
  95. Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835PubMedPubMedCentralGoogle Scholar
  96. Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect host. Annu Rev Entomol 39:293–322Google Scholar
  97. Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, London, pp 73–131Google Scholar
  98. Hirao A, Ehlers R-U (2010) Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl Microbiol Biotechnol 85:507–515PubMedGoogle Scholar
  99. Huber J (1986) Use of baculoviruses in pest management programs. In: Granados R, Federici B (eds) The biology of baculoviruses. Vol II: practical application for insect control. CRC, Boca Raton, pp 181–202Google Scholar
  100. Hywel-Jones NL, Gillespie AT (1990) Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycol Res 94:389–392Google Scholar
  101. Inglis PW, Tigano MS, Valadares-Inglis MC (1999) Transformation of the entomopathogenic fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus (Deuteromycotina: Hyphomycetes) to benomyl resistance. Genet Mol Biol 22:119–123Google Scholar
  102. Janmaat AF, Myers JH (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Tricoplusia ni. Proc R Soc Lond B270:2263–2270Google Scholar
  103. Jansson RK, Lecrone SH, Gaugler R (1993) Field efficacy and persistence of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) for control of sweetpotato weevil (Coleoptera: Apionidae) in southern Florida. J Econ Entomol 86:1055–1063Google Scholar
  104. Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. BioControl 55:159–185Google Scholar
  105. Jaronski ST (2012) Microbial control of invertebrate pests. In: Sundh I, Wilcks A, Goettel MS (eds) Beneficial microorganisms in agriculture, food and the environment: safety assessment and regulation. CABI, Wallingford, pp 72–95Google Scholar
  106. Jaronski S (2013) Mass production of entomopathogenic fungi—state of the art. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 357–413Google Scholar
  107. Jaronski ST, Jackson MA (2012) Mass production of entomopathogenic Hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic, New York, pp 255–284Google Scholar
  108. Jaros-Su J, Groden E, Zhang J (1999) Effects of selected fungicides and the timing of fungicide application in Beauveria bassiana-induced mortality of the Colorado potato beetle (Coleoptera: Chrysomelidae). Biol Control 15:259–269Google Scholar
  109. Jin X, Streett DA, Dunlap CA et al (2008) Application of hydrophilic–lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana. Biol Control 46:226–233Google Scholar
  110. Johnigk S-A, Ecke F, Poehling M et al (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation. Appl Microbiol Biotechnol 64:651–658PubMedGoogle Scholar
  111. Johnson VW, Pearson JF, Jackson TA (2001) Formulation of Serratia entomophila for biological control of grass grub. New Zealand plant protection, Proceedings of a conference, vol 54. Palmerston North, New Zealand, 14–16 Aug 2001, pp 125–127Google Scholar
  112. Kabaluk JT, Svircev AM, Goettel MS et al (eds) (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, p 99.
  113. Kaya HK (1985) Entomogenous nematodes for insect control in IPM systems. In: Hoy MA, Herzog DC (eds) Biological control in agricultural IPM systems. Academic, Orlando, pp 283–302Google Scholar
  114. Kaya HK (1990) Soil ecology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 93–115Google Scholar
  115. Kaya HK (2002) Natural enemies and other antagonists. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 189–203Google Scholar
  116. Kaya HK, Koppenhöfer AM (1996) Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci Technol 6:357–371Google Scholar
  117. Khan S, Guo L, Maimaiti Y et al (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3:63–79Google Scholar
  118. Kim HS, Jung MH, Ahn S et al (2002) Structure elucidation of a new cyclic hexadepsipeptide from Beauveria felina. J Antibiot 55:598–601PubMedGoogle Scholar
  119. Kirsch K, Schmutterer H (1988) Low efficacy of a Bacillusthuringiensis (Berl) formulation in controlling the diamondback moth, Plutella xylostella (L), in the Philippines. J Appl Entomol 105:249–255Google Scholar
  120. Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC, Boca Raton, pp 195–214Google Scholar
  121. Klein MG (1993) Biological control of scarabs with entomopathogenic nematodes. In: Bedding R, Akhurst R, Kaya H (eds) Nematodes and the biological control of insect pests. CSIRO, East Melbourne, pp 49–58Google Scholar
  122. Koppenhöfer AM (2000) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer, Dordrecht, pp 283–301Google Scholar
  123. Koppenhöfer AM, Fuzy EM (2003) Steinernema scarabaei for the control of white grubs. Biol Control 28:47–59Google Scholar
  124. Koppenhöfer AM, Fuzy EM, Crocker R et al (2004) Pathogenicity of Heterorhabditis bacteriophora, Steinernema glaseri, and S. scarabaei (Rhabditida: Heterorhabditidae, Steinernematidae) against 12 white grub species (Coleoptera: Scarabaeidae). Biocontrol Sci Technol 14:87–92Google Scholar
  125. Krasnoff SB, Gibson DM, Belofsky GN et al (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59:485–489Google Scholar
  126. Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144PubMedGoogle Scholar
  127. Lacey LA, Shapiro-Ilan DI, Glenn GM (2010) Post-application of anti-desiccant agents improves efficacy of entomopathogenic nematodes in formulated host cadavers or aqueous suspension against diapausing codling moth larvae (Lepidoptera: Tortricidae). Biocontrol Sci Technol 20:909–921Google Scholar
  128. Laird M, Lacey LA, Davidson EW (1990) Safety of microbial insecticides. CRC, Boca RatonGoogle Scholar
  129. Lasa R, Williams T, Caballero P (2008) Insecticidal properties and microbial contaminants in a Spodoptera exigua multiple nucleopolyhedrovirus (Baculoviridae) formulation stored at different temperatures. J Econ Entomol 101:42–49PubMedGoogle Scholar
  130. Leemon DM, Jonsson NN (2008) Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J Invertebr Pathol 97:40–49PubMedGoogle Scholar
  131. Lewis EE, Clarke DJ (2012) Nematode parasites and entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, pp 395–443Google Scholar
  132. Lingg AJ, Donaldson MD (1981) Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. J Invertebr Pathol 38:191–200Google Scholar
  133. Liu CM, Huang SS, Tzeng YM (2004) Analysis of destruxins produced from Metarhizium anisopliae by capillary electrophoresis. J Chromatogr Sci 42:140–144PubMedGoogle Scholar
  134. Llàcer E, Martinez de Altube MM, Jacas JA (2009) Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl 54:559–565Google Scholar
  135. Lomer CJ, Bateman RP, Johnson DL et al (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702PubMedGoogle Scholar
  136. Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29PubMedGoogle Scholar
  137. Maeda S (1989) Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res Commun 165:1177–1183PubMedGoogle Scholar
  138. McCoy CW, Samson RA, Boucias DG (1988) Entomogenous fungi. In: Ignoffo CM (ed) CRC handbook of natural pesticides. Microbial insecticides, part A. Entomogenous protozoa and fungi, vol 5. CRC, Boca Raton, pp 151–236Google Scholar
  139. McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195PubMedGoogle Scholar
  140. Miller LK (1997) Introduction to the Baculoviruses. In: Miller LK (ed) The Baculoviruses. Plenum, New York, pp 1–6Google Scholar
  141. Milner RJ (1989) Ecological considerations on the use of Metarhizium for control of soil-dwelling pests. In: Robertson LN, Allsopp PG (eds) Proceedings of a soil-invertebrate workshop. QDPI Indooroopilly, Queensland, pp 10–13Google Scholar
  142. Milner RJ, Lozano LB, Driver F et al (2003) A comparative study of two Mexican isolates with an Australian isolate of Metarhizium anisopliae var. acridum—strain characterisation, temperature profile and virulence for wingless grasshopper, Phaulacridium vittatum. BioControl 48:335–348Google Scholar
  143. Moscardi F, Morales L, Santos B (2002) The successful use of AgMNPV for the control of velvet bean caterpillar, Anticarsia gemmatalis, in soybean in Brazil. Proceedings of the VIII international on invertebrate pathology and microbial control and XXXV annual meeting of the Society for Invertebrate Pathology. Foz do Iguassu, Brazil, pp 86–91Google Scholar
  144. Moscardi F, Souza MLd, Castro MEBd et al (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 415–445Google Scholar
  145. Mukuka J, Strauch O, Ehlers R-U (2010a) Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis spp. Nematology 12:711–720Google Scholar
  146. Mukuka J, Strauch O, Hoppe C et al (2010b) Major improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl 55:511–521Google Scholar
  147. Müller-Kögler E (1965) Pilzkrankheiten bei Insekten. Anwendung zur biologischen Schädlingsbekämpfung und Grundlagen der Insektenmykologie. P. Parey, Berlin, p 444Google Scholar
  148. Nickle WR (1984) Plant and insect nematodes. Marcel Dekker, New YorkGoogle Scholar
  149. Nimkingrat P, Strauch O, Ehlers RU (2013) Hybridisation and genetic selection for improving desiccation tolerance of the entomopathogenic nematode Steinernema feltiae. Biocontrol Sci Technol 23:348–361Google Scholar
  150. Oliveira DP, Chaves BM, Loures EG (1981) Estudo comparativo da sobrevivencia de Metarhizium anisopliae (Metsch.) Sorokin em diferentes tipos de solo. Rev Theobroma 11:233–239Google Scholar
  151. O’Reilly DR, Miller LK (1991) Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089Google Scholar
  152. Ownley BH, Griffin MR, Klingeman WE et al (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270PubMedGoogle Scholar
  153. Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp 74:e50360Google Scholar
  154. Pemsel M, Schwab S, Scheurer A et al (2010) Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J Supercrit Fluids 53:174–178Google Scholar
  155. Perez EE, Lewis EE, Shapiro-Ilan DI (2003) Impact of host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. J Invertebr Pathol 82:111–118PubMedGoogle Scholar
  156. Poinar GO Jr (1979) Nematodes for biological control of insects. CRC, Boca RatonGoogle Scholar
  157. Poinar GO Jr (1989) Non-insect hosts for the entomogenous rhabditoid nematodes Neoaplectana (Steinernematidae) and Heterorhabditis (Heterorhabditidae). Rev Nématol 12:423–428Google Scholar
  158. Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200PubMedGoogle Scholar
  159. Rajagopal R, Mohan S, Bhatnagar RK (2006) Direct infection of Spodoptera litura by Photorhabdus luminescens encapsulated in alginate beads. J Invertebr Pathol 93:50–53PubMedGoogle Scholar
  160. Rashki M, Kharazi-pakdel A, Allahyari H et al (2009) Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biol Control 50:324–328Google Scholar
  161. Rath AC, Anderson GC, Worledge D et al (1995) The effect of low temperatures on the virulence of Metarhizium anisopliae (DAT F-001) to the subterranean scarab, Adoryphorus couloni. J Invertebr Pathol 65:186–192Google Scholar
  162. Ravensberg WJ (2011) Critical factors in the successful commercialization of microbial pest control products. In: Ravensberg WJ (ed) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods (Progress in biological control). Springer, Dordrecht, pp 295–356Google Scholar
  163. Raymond B, Johnston PR, Nielsen-LeRoux C et al (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194PubMedGoogle Scholar
  164. Reddy GVP, Furlong MJ, Pell JK et al (1998) Zoophthora radicans infection inhibits the response to and production of sex pheromone in the diamondback moth (Note). J Invertebr Pathol 72:167–169PubMedGoogle Scholar
  165. Reding ME, Zhu H, Derksen RC (2008) Drip-chemigation with imidacloprid and nematodes for control of scarab larvae in nursery crops. J Environ Hort 26:93–100Google Scholar
  166. Reid S, Chan L, van Oers MM (2013) Production of entomopathogenic viruses. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 437–482Google Scholar
  167. Roberts DW, Campbell AS (1977) Stability of entomopathogenic fungi. Misc Publ Entomol Soc Am 10:19–76Google Scholar
  168. Roberts DW, Hajek AE (1992) Entomopathogenic fungi as bioinsecticides. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 144–159Google Scholar
  169. Robert PH, Riba G (1989) Toxic and repulsive effect of spray per os and systemic application of destruxin E to aphids. Mycopathologia 108:170–183Google Scholar
  170. Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492Google Scholar
  171. Saik JE, Lacey LA, Lacey CM (1990) Safety of microbial insecticides to vertebrates—domestic animals and wildlife. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 115–132Google Scholar
  172. Salamouny SE, Shapiro M, Ling KS et al (2009) Black tea and lignin as ultraviolet protectants for the beet armyworm nucleopolyhedrovirus. J Entomol Sci 44:50–58Google Scholar
  173. Samson RA, Evans HC, Latgé JP (1988) Atlas of Entomopathogenic Fungi. Springer, BerlinGoogle Scholar
  174. Sandhu SS, Kinghorn JR, Rajak RC et al (2001) Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans. Indian J Exp Biol 39:650–653PubMedGoogle Scholar
  175. Sansinenea E, Vázquez C, Ortiz A (2010) Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnol Lett 32:1549–1557PubMedGoogle Scholar
  176. Santi L, Silva LADe, Silva WOBd et al (2011) Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus. World J Microbiol Biotechnol 27:2297–2303Google Scholar
  177. Santos PdS, Silva, Monteiro AC et al (2012) Selection of surfactant compounds to enhance the dispersion of Beauveria bassiana. Biocontrol Sci Technol 22:281–292Google Scholar
  178. Schroer S, Ehlers R-U (2005) Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol Control 33:81–86Google Scholar
  179. Screen SE, Hu G, St. Leger RJ (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invertebr Pathol 78:260–266PubMedGoogle Scholar
  180. Seramis GmbH (2012) Seramis special growing granules. Accessed 23 Dec 2012
  181. Shah PA, Goettel MS (1999) Directory of microbial control products and services. Society for Invertebrate Pathology, GainesvilleGoogle Scholar
  182. Shapiro M, Argauer R (1997) Components of the stilbene optical brightener tinopal LPW as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. J Econ Entomol 90:899–904Google Scholar
  183. Shapiro DI, Glazer I (1996) Comparison of entomopathogenic nematode dispersal from infected hosts versus aqueous suspension. Environ Entomol 25:1455–1461Google Scholar
  184. Shapiro DI, Lewis EE (1999) Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environ Entomol 28:907–911Google Scholar
  185. Shapiro DI, Glazer I, Segal D (1996) Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biol Control 6:238–244Google Scholar
  186. Shapiro DI, Glazer I, Segal D (1997) Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biol Control 8:153–159Google Scholar
  187. Shapiro-Ilan DI, Lewis EE, Behle RW et al (2001) Formulation of entomopathogenic nematode-infected cadavers. J Invertebr Pathol 78:17–23PubMedGoogle Scholar
  188. Shapiro-Ilan DI, Gouge DH, Koppenhöfer AM (2002) Factors affecting commercial success: case studies in cotton, turf and citrus. In: Gaugler R (ed) Entomopathogenic nematology. CABI, Wallingford, pp 333–355Google Scholar
  189. Shapiro-Ilan DI, Lewis EE, Son Y et al (2003) Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. J Invertebr Pathol 83:270–272PubMedGoogle Scholar
  190. Shapiro-Ilan DI, Stuart RJ, McCoy CW (2005) Targeted improvement of Steinernema carpocapsae for control of the pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae) through hybridization and bacterial transfer. Biol Control 34:215–221Google Scholar
  191. Shapiro-Ilan DI, Rojas MG, Morales-Ramos JA et al (2008) Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: lipid and protein based supplements in Tenebrio molitor diets. J Nematol 40:13–19PubMedPubMedCentralGoogle Scholar
  192. Shapiro-Ilan DI, Cottrell TE, Mizell RF et al (2010) Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: improved aboveground suppression with a novel gel application. Biol Control 54:23–28Google Scholar
  193. Shapiro-Ilan DI, Han R, Dolinksi C (2012a) Entomopathogenic nematode production and application technology. J Nematol 44:206–217Google Scholar
  194. Shapiro-Ilan DI, Bruck DJ, Lacey LA (2012b) Principles of epizootiology and microbial control. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic, San Diego, pp 29–72Google Scholar
  195. Shapiro-Ilan DI, Han R, Qiu X (2013) Production of entomopathogenic nematodes. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic, San Diego, pp 321–355Google Scholar
  196. Siegel JP (1997) Testing the pathogenicity and infectivity of entomopathogens to mammals. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, San Diego, pp 325–336Google Scholar
  197. Siegel JP, Shadduck JA (1990) Safety of microbial insecticides to vertebrates—humans. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC, Boca Raton, pp 101–114Google Scholar
  198. Smits PH (1996) Post-application persistence of entomopathogenic nematodes. Biocontrol Sci Technol 6:379–387Google Scholar
  199. Snow FH (1893) Contagious diseases of the chinch bug. Second Ann. Rpt. Dir. Kans. Univ. Exp. Sta. for the year 1892Google Scholar
  200. St. Leger RJ (2001) Notification of intent to release a transgenic strain of Metarhizium anisopliae (document submitted by the University of Maryland as required by FIFRA). Accessed 16 Aug 2001
  201. St. Leger RJ, Screen S (2001) Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI, Wallingford, pp 219–237Google Scholar
  202. St. Leger RJ, Wang C (2009) Entomopathogenic fungi and the genomic era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI, Wallingford, pp 366–400Google Scholar
  203. St. Leger RJ, Frank DC, Roberts DW et al (1992) Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur J Biochem 204:991–1001PubMedGoogle Scholar
  204. St. Leger RJ, Shimizu S, Joshi L et al (1995) Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol Lett 131:289–294Google Scholar
  205. St. Leger RJ, Joshi L, Bidochka MJ et al (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354PubMedPubMedCentralGoogle Scholar
  206. Steinkraus DC, Boys GO, Bagwell RD et al (1998) Expansion of extension-based aphid fungus sampling service to Louisiana and Mississippi. Proc Beltwide Cotton Conf 2:1239–1242Google Scholar
  207. Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79Google Scholar
  208. Tabashnik BE, Gassmann AJ, Crowder DW et al (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:99–202Google Scholar
  209. Tanada Y, Kaya HK (1993) Insect pathology. Academic, San DiegoGoogle Scholar
  210. Teera-Arunsiri A, Suphantharika M, Ketunuti U (2003) Preparation of spray-dried wettable powder formulations of Bacillus thuringiensis-based biopesticides. J Econ Entomol 96:292–299PubMedGoogle Scholar
  211. Thomsen L, Eilenberg J (2000) Time-concentration mortality of Pieris brassicae (Lepidoptera: Pieridae) and Agrotis segetum (Lepidoptera: Noctuidae) larvae from different destruxins. Environ Entomol 29:1041–1047Google Scholar
  212. Townsend RJ, Ferguson CM, Proffitt JR et al (2004) Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, vol 57. Proceedings of a conference, Hamilton, New Zealand, 10–12 Aug 2004, pp 310–313Google Scholar
  213. University of Arkansas (2013) Cotton aphid fungus sampling service. Accessed 6 Jan 2014
  214. Upadhyay RK (2003) Advances in microbial control of insect pests. Kluwer, New YorkGoogle Scholar
  215. USDA APHIS (2014) Biological control organism permits. Accessed 13 Jan 2014
  216. US EPA (2006) Biopesticide registration action document, Beauveria bassiana I-IF23 (PC Code 090305). US Environmental Protection Agency, Washington, DC. Accessed 13 Jan 2014
  217. US EPA (2012) Chromobacterium subtsugae strain PRAA4-1T (016329) Fact Sheet. Accessed 10 Jan 2014
  218. van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85Google Scholar
  219. Walstad JD, Anderson RF, Stambaugh WJ (1970) Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarhizium anisopliae). J Invertebr Pathol 16:221–226Google Scholar
  220. Wang X, Grewal PS (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biol Control 23:71–78Google Scholar
  221. Wang C, RJ St. Leger (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A 103:6647–6652PubMedPubMedCentralGoogle Scholar
  222. Wang C, RJ St. Leger (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115PubMedGoogle Scholar
  223. Wang C, Hu G, RJ St. Leger (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718PubMedGoogle Scholar
  224. Welling M, Nachtigall G, Zimmermann G (1994) Metarhizium spp. isolates from Madagascar: morphology and effect of high temperature on growth and infectivity to the migratory locust, Locusta migratoria. Entomophaga 39:351–361Google Scholar
  225. Wennemann L, Cone WW, Wright LC et al (2003) Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems. J Econ Entomol 96:287–291PubMedGoogle Scholar
  226. Wikipedia (2013) Diatomaceous earth. Wikipedia, the free encyclopedia. Accessed 26 Nov 2013
  227. Wouts WM (1991) Steinernema (Neoaplectana) and Heterorhabditis species. In: Nickle WR (ed) Manual of agricultural nematology. Marcel Dekker, New York, pp 855–897Google Scholar
  228. Wraight SP, Carruthers RI (1999) Production, delivery, and use of mycoinsecticides for control of insect pests of field crops. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana, Totowa, pp 233–269Google Scholar
  229. Wraight SP, Jackson MA, de Lock SL (2001) Production, stabilization and formulation of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI, Wallingford, pp 253–287Google Scholar
  230. Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht, pp 223–248Google Scholar
  231. Wu S (2013) Efficacy of entomopathogenic nematodes and entomopathogenic fungi against masked chafer white grubs, Cyclocephala spp. (Coleoptera: Scarabaeidae). Ph. D. Dissertation, Virginia Polytechnic Institute and State University Blacksburg, VAGoogle Scholar
  232. Xavier-Santos S, Lopes RB, Faria M (2011) Emulsifiable oils protect Metarhizium robertsii and Metarhizium pingshaense conidia from imbibitional damage. Biol Control 59:261–267Google Scholar
  233. Young JM, Dunnill P, Pearce JD (2002) Separation characteristics of liquid nematode cultures and the design of recovery operations. Biotechnol Prog 18:29–35PubMedGoogle Scholar
  234. Zhu H, Grewal PS, Reding ME (2011) Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests. Appl Eng Agric 27:317–324Google Scholar
  235. Zimmermann G (1986) Insect pathogenic fungi as pest control agents. In: Franz JM (ed) Progress in zoology: biological plant and health protection, vol 32. Gustav Fischer, New York, pp 217–231Google Scholar
  236. Zimmermann G (2007a) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920Google Scholar
  237. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shaohui Wu
    • 1
  • Gadi V.P. Reddy
    • 1
    Email author
  • Stefan T. Jaronski
    • 2
  1. 1.Western Triangle Ag Research CenterMontana State UniversityConradUSA
  2. 2.USDA ARS Northern Plains Agricultural Research LaboratorySidneyUSA

Personalised recommendations