Non-intrusive Uncertainty Quantification with Sparse Grids for Multivariate Peridynamic Simulations

  • Fabian FranzelinEmail author
  • Patrick Diehl
  • Dirk Pflüger
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 100)


Peridynamics is an accepted method in engineering for modeling crack propagation on a macroscopic scale. However, the sensitivity of the method to two important model parameters – elasticity and the particle density – has not yet been studied. Motivated by Silling and Askari (Comput Struct 83(17–18):1526–1535, 2005) and Kidane et al. (J Mech Phys Solids 60(5):983–1001, 2012) we use Peridynamics to simulate a high-speed projectile impacting a plate and study the overall damage on the plate. We have extended the setting by the magnitude of the force of the indenter and selected the parameter range such that a sharp transition in the response function occurs.We describe the simulation setting as an uncertainty quantification problem and use a non-intrusive stochastic collocation method based on spatially adaptive sparse grids to propagate the uncertainty. We show first convincing results of its successful application to Peridynamics and compare to Monte Carlo sampling.If the magnitude of the force is deterministic, a strong sensitivity of the damage in the plate with respect to the elasticity factor can be shown for the 2-dimensional setting. If it is non-deterministic, it dominates the simulation and explains most of the variance of the solution. The error of the expectation value estimation reaches an early saturation point for the studied collocation methods: We found parameter ranges where the quantity of interest oscillates. Moreover, faster convergence and higher robustness than for the Monte Carlo method can be observed.


Uncertainty quantification Sparse grids Peridynamics Sensitivity analysis ANOVA 


  1. 1.
    R. Archibald, R. Deiterding, J. Jakeman, Extending adaptive sparse grids for stochastic collocation to hybrid parallel architectures, Oak Ridge National Lab, No. 4, 2–6 Jan (2012)Google Scholar
  2. 2.
    H.-J. Bungartz, S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids. Computing 71(1), 89–114 (2003). (English)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 1–123 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Ganapathysubramanian, N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems. Comput. Phys. 225(1), 652–685 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Proceedings of the conference on Foundations of Computational Mathematics (FoCM05), Santander, SpainGoogle Scholar
  7. 7.
    M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 26(5), 455–489 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    J. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. Comput. Phys. 230(10), 3977–3997 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, H. Owhadi, G. Ravichandran, M. Stalzer, T.J. Sullivan, Rigorous model-based uncertainty quantification with application to terminal ballistics, part I: systems with controllable inputs and small scatter. J. Mech. Phys. Solids 60(5), 983–1001 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Comput. Phys. 228(8), 3084–3113 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    S. Oladyshkin, H. Class, R. Helmig, W. Nowak, A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34(11), 1508–1518 (2011)CrossRefGoogle Scholar
  13. 13.
    M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S. Silling, Implementing peridyanmics within a molecular dynamics code. Comput. Phys. Commun. 179, 777–783 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    M.L. Parks, P. Seleson, S.J. Plimpton, S. Silling, R.B. Lehoucq, Peridynamics with LAMMPS: a user guide v0.3 beta. Sandia report, Sandia National Laboratories, Nov 2011Google Scholar
  15. 15.
    D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)Google Scholar
  16. 16.
    D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications. LNCSE (Springer, 2012), pp. 243–262Google Scholar
  17. 17.
    D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems. J. Complex. 26(5), 508–522 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23(1952), 470–472 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)zbMATHMathSciNetGoogle Scholar
  20. 20.
    S. Silling, Reformulation of elasticity theory for discontinuties and long-range forces. Sandia report SAND98-2176, Sandia National Laboratories, 1998Google Scholar
  21. 21.
    S. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)CrossRefGoogle Scholar
  22. 22.
    I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    D. Stirzaker, Elementary Probability (Cambridge University Press, Cambridge/New York, 2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    X. Wan, E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 3, 901–928 (2006)CrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Xiu, E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    D. Xiu, E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. Comput. Phys. 187(1), 137–167 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    G. Zhang, D. Lu, M. Ye, M. Gunzburger, C.G. Webster, An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling. Adv. Water Resour. 49(10), 6871–6892 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabian Franzelin
    • 1
    Email author
  • Patrick Diehl
    • 2
  • Dirk Pflüger
    • 1
  1. 1.Universität StuttgartStuttgartGermany
  2. 2.Universität BonnBonnGermany

Personalised recommendations