Multiscale Partition of Unity

  • Patrick Henning
  • Philipp MorgensternEmail author
  • Daniel Peterseim
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 100)


We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for ‘cheap’ parameter choices.


Partition of unity method Multiscale method LOD Upscaling Homogenization 


  1. 1.
    A. Abdulle, E. Weinan, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012). MR 2916381Google Scholar
  2. 2.
    H.W. Alt, Lineare Funktionalanalysis (Springer, Berlin/Heidelberg, 2006)zbMATHGoogle Scholar
  3. 3.
    I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, in Meshfree Methods for Partial Differential Equations, Bonn, 2001. Lecture Notes in Computational Science and Engineering, vol. 26 (Springer, Berlin, 2003), pp. 1–20. MR 2003426 (2004h:65116)Google Scholar
  4. 4.
    I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994). MR 1286212 (95g:65146)Google Scholar
  5. 5.
    I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011). MR 2801210 (2012e:65259)Google Scholar
  6. 6.
    I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1996)CrossRefGoogle Scholar
  7. 7.
    T. Belytschko, N. Moës, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)Google Scholar
  9. 9.
    C.A. Duarte, I. Babuška, J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000). MR 1768540 (2001b:74053)Google Scholar
  10. 10.
    C.A. Duarte, D.-J. Kim, Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 487–504 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139(1–4), 237–262 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    C.A. Duarte, L.G. Reno, A. Simone, A high-order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007). MR 2355178Google Scholar
  13. 13.
    T.-P. Fries, H.-G. Matthies, Classification and overview of meshfree methods. Technical report 2003-3, Technische Universität Braunschweig (2004)Google Scholar
  14. 14.
    A. Gloria, Reduction of the resonance error—Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21(8), 1601–1630 (2011). MR 2826466Google Scholar
  15. 15.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2000). (electronic) MR 1785338 (2001i:65105)Google Scholar
  16. 16.
    M. Griebel, M.A. Schweitzer, A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002). (electronic) MR 1885078 (2003b:65118)Google Scholar
  17. 17.
    V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266(0), 23–39 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal. eFirst (2013)Google Scholar
  19. 19.
    P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013). MR 3123820Google Scholar
  20. 20.
    M. Holst, Application of domain decomposition and partition of unity methods in physics and geometry. Domain decomposition methods in science and engineering, National Autonomous University of Mexico, México, 2003, pp. 63–78 (electronic). MR 2093735Google Scholar
  21. 21.
    T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). MR 1455261 (98e:73132)Google Scholar
  22. 22.
    T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). MR 1660141 (99m:65239)Google Scholar
  23. 23.
    D.-J. Kim, C.A. Duarte, S.P. Proença, A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput. Mech. 50(5), 563–578 (2012) (English)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    T.J. Liszka, C.A. Duarte, W. Tworzydlo, HP-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Målqvist, Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–1086 (2011). MR 2831590 (2012j:65419)Google Scholar
  26. 26.
    A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Published electronically (in Mathematics of Computation, 2014)Google Scholar
  27. 27.
    A. Målqvist, D. Peterseim, Computation of eigenvalues by numerical upscaling (2012). ArXiv e-prints 1212.0090Google Scholar
  28. 28.
    J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)CrossRefzbMATHGoogle Scholar
  29. 29.
    N. Moës, J.E. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, A new cloud-based HP finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–572 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012). MR 2863778 (2012k:65150)Google Scholar
  33. 33.
    T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000). MR 1734667 (2000h:74077)Google Scholar
  34. 34.
    T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001). MR 1832655 (2002h:65195)Google Scholar
  35. 35.
    C. Wang, Z.-p. Huang, L.-k. Li, Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. (English Ed.) 29(4), 527–533 (2008). MR 2405141 (2009b:65329)Google Scholar
  36. 36.
    E. Weinan, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003). MR 1979846 (2004b:35019)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrick Henning
    • 1
  • Philipp Morgenstern
    • 2
    Email author
  • Daniel Peterseim
    • 2
  1. 1.ANMC, Section de MathématiquesÉcole polytechnique fédérale de LausanneLausanneSwitzerland
  2. 2.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations