Entanglement, Flow and Classical Simulatability in Measurement Based Quantum Computation

  • Damian Markham
  • Elham Kashefi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8464)


The question of which and how a particular class of entangled resource states (known as graph states) can be used for measurement based quantum computation (MBQC) recently gave rise to the notion of Flow and its generalisation gFlow. That is a causal structure for measurements guaranteeing deterministic computation. Furthermore, gFlow has proven itself to be a powerful tool in studying the difference between the measurement-based and circuit models for quantum computing, as well as analysing cryptographic protocols. On the other hand, entanglement is known to play a crucial role in MBQC. In this paper we first show how gFlow can be used to directly give a bound on the classical simulation of an MBQC. Our method offers an interpretation of the gFlow as showing how information flows through a computation, giving rise to an information light cone.We then establish a link between entanglement and the existence of gFlow for a graph state. We show that the gFlow can be used to upper bound the entanglement width and what we call the structural entanglement of a graph state. In turn this gives another method relating the gFlow to upper bound on how efficiently a computation can be simulated classically. These two methods of getting bounds on the difficulty of classical simulation are different and complementary and several known results follow. In particular known relations between the MBQC and the circuit model allow these results to be translated across models.


Quantum Computation Logical Operator Cluster State Graph State Resource State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review Letters 86, 5188 (2001)CrossRefGoogle Scholar
  2. 2.
    Anders, J., Browne, D.E.: Computational power of correlations. Physical Review Letters 102, 050502 (2009)Google Scholar
  3. 3.
    Hobanand, M.J., Wallman, J.J, Browne, D.E.: Generalized bell-inequality experiments and computation. Physical Review A 84(6), 062107 (2011)Google Scholar
  4. 4.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computing. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), p. 517 (2009)Google Scholar
  5. 5.
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical Review A 78, 042309 (2008)Google Scholar
  6. 6.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of ACM 54, 8 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Physical Review Letters 91(14), 147902 (2003)CrossRefGoogle Scholar
  8. 8.
    Yoran, N., Short, A.J.: Efficient classical simulation of the approximate quantum fourier transform. Physical Review A 76(4), 042321 (2007)Google Scholar
  9. 9.
    Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for measurement-based quantum computation. Physical Review Letters 97(15), 150504 (2006)CrossRefGoogle Scholar
  10. 10.
    Van den Nest, M., Dür, W., Vidal, G., Briegel, H.J.: Classical simulation versus universality in measurement-based quantum computation. Physical Review A 75(1), 012337 (2007)Google Scholar
  11. 11.
    Van den Nest, M., Dür, W., Miyake, A., Briegel, H.J.: Fundamentals of universality in one-way quantum computation. New Journal of Physics 9(6), 204 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A 74, 052310 (2006)Google Scholar
  13. 13.
    Browne, D., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New Journal of Physics 9, 250 (2007)CrossRefGoogle Scholar
  14. 14.
    Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Physical Review A 69(6), 062311 (2004)Google Scholar
  15. 15.
    de Beaudrap, N.: Finding flows in the one-way measurement model. Phys. Rev. A 77, 022328, 8 (2006, 2008)Google Scholar
  16. 16.
    Mhalla, M., Perdrix, S.: Finding optimal flows efficiently. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 857–868. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    de Beaudrap, N.: Unitary-circuit semantics for measurement-based computations. International Journal of Quantum Information (IJQI) 8, 1 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kashefi, E., Markham, D., Mhalla, M., Perdrix, S.: Information flow in secret sharing protocols. Electron. Notes Theor. Comput. Sci. 9 (2009)Google Scholar
  19. 19.
    de Beaudrap, N., Danos, V., Kashefi, E., Roetteler, M.: Quadratic form expansions for unitaries. In: Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 29–46. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theoretical Computer Science 410(26), 2489 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kashefi., E., da Silva, R.D., Galvao, E.F.: Closed timelike curves in measurement-based quantum computation. Phys. Rev. A 83, 012316 (2011)Google Scholar
  22. 22.
    Raussendorf, R., Sarvepalli, P., Wei, T.-C., Haghnegahdar, P.: Measurement-based quantum computation–a quantum-meachanical toy model for spacetime? arXiv:1108.5774 (2011)Google Scholar
  23. 23.
    Raussendorf, R., Sarvepalli, P., Wei, T.-C., Haghnegahdar, P.: Symmetry constraints on temporal order in measurement-based quantum computation. Electronic Proceedings in Theoretical Computer Science (EPTCS) 95, 219 (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Jozsa, R.: On the simulation of quantum circuits. quant-ph/0603163 (2006)Google Scholar
  25. 25.
    Perdrix, S., Marin, A., Markham, D.: Access structure in graphs in high dimension and application to secret sharing. In: Proceedings of the Eighth Conference on the Theory of Quantum Computation, Communication and Cryptography (2013)Google Scholar
  26. 26.
    Mhalla, M., Murao, M., Perdrix, S., Someya, M., Turner, P.S.: Which graph states are useful for quantum information processing? In: Proceedings of the Sixth Conference on the Theory of Quantum Computation, Communication and Cryptography (2011)Google Scholar
  27. 27.
    Browne, D., Briegel, H.J.: One-way quantum computation. In: Lectures on Quantum Information, p. 359. Wiley Online Library (2006)Google Scholar
  28. 28.
    Antonio, B., Markham, D., Anders, J.: Trade-off between computation time and hamiltonian degree in adiabatic graph-state quantum computation. arXiv:1309.1443 (2013)Google Scholar
  29. 29.
    Browne, D.E., Kashefi, E., Perdrix, S.: Computational depth complexity of measurement-based quantum computation. In: Proceedings of the Fifth Conference on the Theory of Quantum Computation, Communication and Cryptography, p. 35 (2010)Google Scholar
  30. 30.
    Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997)Google Scholar
  31. 31.
    Gottesman, D.: The heisenberg representation of quantum computers, talk at. In: International Conference on Group Theoretic Methods in Physics (1998)Google Scholar
  32. 32.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation with cluster states. Physical Review A 68, 022312 (2003)Google Scholar
  33. 33.
    Nielsen, M.A.: Cluster-state quantum computation. Reports on Mathematical Physics 57, 147 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Deutsch, D., Hayden, P.: Information flow in entangled quantum systems. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 456, p. 1759 (2000)Google Scholar
  35. 35.
    Diestel, R.: Graph Theory, 4th edn. Springer (2010)Google Scholar
  36. 36.
    Murao, M., Miyazaki, J., Hajdušek, M.: Translating measurement-based quantum computation with gflow into quantum circuit. arXiv:1306.2724 (2013)Google Scholar
  37. 37.
    Linden, N., Clark, S., Jozsa, R.: Generalised clifford groups and simulation of associated quantum circuits. arXiv:0701103 (2007)Google Scholar
  38. 38.
    Vidal, G.: A class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101(110501) (2008)Google Scholar
  39. 39.
    Anders, J., Hajdušek, M., Markham, D., Vedral, V.: How much of one-way computation is just thermodynamics? Found. Phys. 38 (2008)Google Scholar
  40. 40.
    Markham, D., Anders, J., Hajdušek, M., Vedral, V.: Measurement based quantum computation on fractal lattices. In: EPTCS 26 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Damian Markham
    • 1
  • Elham Kashefi
    • 2
  1. 1.CNRS LTCI, Département Informatique et RéseauxTelecom ParisTechParis CEDEX 13France
  2. 2.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations