Automata Learning: A Categorical Perspective

  • Bart Jacobs
  • Alexandra Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8464)


Automata learning is a known technique to infer a finite state machine from a set of observations. In this paper, we revisit Angluin’s original algorithm from a categorical perspective. This abstract view on the main ingredients of the algorithm lays a uniform framework to derive algorithms for other types of automata. We show a straightforward generalization to Moore and Mealy machines, which yields an algorithm already know in the literature, and we discuss generalizations to other types of automata, including weighted automata.


Linear Setting Automaton Learn Observation Table Deterministic Automaton Mealy Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, F.: Inference and abstraction of communication protocols. Master’s thesis, Radboud University Nijmegen and Uppsala University (2009)Google Scholar
  2. 2.
    Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: ICST Workshops, pp. 461–468. IEEE (2013)Google Scholar
  3. 3.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  4. 4.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angluin, D., Csürös, M.: Learning Markov chains with variable memory length from noisy output. In: Freund, Y., Schapire, R.E. (eds.) COLT, pp. 298–308. ACM (1997)Google Scholar
  6. 6.
    Arbib, M.A., Manes, E.G.: Adjoint machines, state-behavior machines, and duality. Journal of Pure and Applied Algebra 6(3), 313–344 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985) Revized and corrected version available from URL,
  8. 8.
    Bonchi, F., Bonsangue, M., Hansen, H., Panangaden, P., Rutten, J., Silva, A.: Algebra-coalgebra duality in Brzozowski’s minimization algorithm. In: ACM Transactions on Computational Logic (TOCL) (2014)Google Scholar
  9. 9.
    Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: Brzozowski’s Algorithm (Co)Algebraically. In: Constable, R.L., Silva, A. (eds.) Kozen Festschrift. LNCS, vol. 7230, pp. 12–23. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Bonchi, F., Caltais, G., Pous, D., Silva, A.: Brzozowski’s and up-to algorithms for must testing. In: Shan, C.-C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 1–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Bonchi, F., Pous, D.: Checking nfa equivalence with bisimulations up to congruence. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 457–468. ACM (2013)Google Scholar
  12. 12.
    Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Eilenberg, S.: Automata, languages, and machines. Pure and Applied Mathematics. Elsevier Science (1974)Google Scholar
  14. 14.
    Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Technical report, Cornell University (1979)Google Scholar
  15. 15.
    Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. Technical report, Stanford University, Stanford, CA, USA (1971)Google Scholar
  16. 16.
    Kalman, R.: On the general theory of control systems. IRE Transactions on Automatic Control 4(3), 110–110 (1959)CrossRefGoogle Scholar
  17. 17.
    Pous, D., Sangiorgi, D.: Enhancements of the coinductive proof method. In: Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction. Cambridge Tracts in Theoretical Computer Science, vol. 52, Cambridge University Press (November 2011)Google Scholar
  18. 18.
    Rot, J., Bonsangue, M., Rutten, J.M.M.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Sangiorgi, D.: Beyond Bisimulation: The “up-to” Techniques. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 161–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bart Jacobs
    • 1
  • Alexandra Silva
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNetherlands

Personalised recommendations