Word Order Alternation in Sanskrit via Precyclicity in Pregroup Grammars

  • Claudia Casadio
  • Mehrnoosh Sadrzadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8464)

Abstract

We develop a pregroup grammar for a basic fragment of Sanskrit, similar to the fragment used by Lambek in his treatment of English in a number of papers. We make reference to recent work of the authors involving the characterization of cyclic rules in pregroup grammars to treat word order alternation (e. g. in English, Persian, Italian, and Latin) and analyse this phenomena in Sanskrit. Pregroups are introduced by Lambek; they are partially ordered compact closed categories. The latter have been invoked to analyze quantum protocols in the work of Abramsky and Coecke. Sanskrit was the ancient official language of India and remains one of its main religious and literary languages.

Keywords

Type Grammar Pregroup Cyclic Rules Movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrusci, M.: Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic. Journal of Symbolic Logic 56, 1403–1451 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abrusci, V.M.: Classical Conservative Extensions of Lambek Calculus. Studia Logica 71, 277–314 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Abrusci, V.M., Ruet, P.: Non-commutative Logic I: the Multiplicative Fragment. Annals of Pure and Applied Logic 101, 29–64 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ades, A.E., Steedman, M.J.: On the Order of Words. Linguistics and Philosophy 4, 517–558 (1982)CrossRefGoogle Scholar
  5. 5.
    Apte, V.: The Student’s Guide to Sanskrit Composition, A Treatise on Sanskrit Syntax for Use of Schools and Colleges, Poona, India, 24th edn. Lokasamgraha Press (1960)Google Scholar
  6. 6.
    Bargelli, D., Lambek, J.: An algebraic approach to french sentence structure. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 62–78. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bhargava, M., Lambek, J.: A Production Grammar for Sanskrit Kinship Terminology. Theoretical Linguistics 18, 45–60 (1992)CrossRefGoogle Scholar
  8. 8.
    Bargelli, D., Lambek, J.: An Algebraic Approach to Arabic Sentence Structure. Linguistic Analysis 31, 301–315 (2001)MATHGoogle Scholar
  9. 9.
    Buszkowski, W.: Lambek Grammars Based on Pregroups. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Buszkowski, W.: Cut elimination for Lambek calculus of adjoints. In: Abrusci, V.M., Casadio, C. (eds.) New Perspectives in Logic and Formal Linguistics, Proceedings of the 5th Roma Workshop, Rome, pp. 85–93 (2002)Google Scholar
  11. 11.
    Buszkowski, W.: Type Logics and Pregroups. Studia Logica 87, 145–169 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Casadio, C., Lambek, J.: An Algebraic Analysis of Clitic Pronouns in Italian. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 110–124. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Casadio, C., Lambek, J.: A Tale of Four Grammars. Studia Logica 71, 315–329 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Casadio, C., Lambek, J.: A Computational Algebraic Approach to Latin Grammar. Research on Language and Computation 3, 45–60 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Casadio, C., Lambek, J. (eds.): Recent Computational Algebraic Approaches to Morphology and Syntax, Polimetrica, Milan (2008)Google Scholar
  16. 16.
    Casadio, C., Sadrzadeh, M.: Clitic movement in pregroup grammar: A cross-linguistic approach. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009. LNCS, vol. 6618, pp. 197–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Casadio, C., Sadrzadeh, M.: Cyclic Properties from Linear Logic to Pregroups. In: Presented at: From Categories to Logic, Linguistics and Physics: A tribute for the 90th birthday of Joachim Lambek, CRM, Montreal (September 21, 2013)Google Scholar
  18. 18.
    Gillon, B.: Word Order in Classical Sanskrit. Indian Linguistics 57, 1–35 (1996)Google Scholar
  19. 19.
    Gillon, B.: Subject Predicate Order in Classical Sanskrit, Language and Grammar, Studies in Mathematical Linguistics and Natural Language. In: Casadio, C., Scott, P.J., Seely, R.A.G. (eds.) Center for the Study of Language and Information (2005)Google Scholar
  20. 20.
    Gillon, B.: Tagging Classical Sanskrit Compounds. In: Kulkarni, A., Huet, G. (eds.) Sanskrit Computational Linguistics. LNCS, vol. 5406, pp. 98–105. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kiślak - Malinowska, A.: Polish Language in Terms of Pregroups. In: Casadio, C., Lambek, J. (eds.) Recent Computational Algebraic Approaches to Morphology and Syntax, Polimetrica, Milan, pp. 145–172 (2008)Google Scholar
  23. 23.
    Lambek, J.: The Mathematics of Sentence Structure. American Mathematics Monthly 65, 154–169 (1958)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lambek, J.: Type Grammar Revisited. In: Lecomte, A., Perrier, G., Lamarche, F. (eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Lambek, J.: A Computational Algebraic Approach to English Grammar. Syntax 7, 128–147 (2004)CrossRefGoogle Scholar
  26. 26.
    Lambek, J.: From Word to Sentence, A Computational Algebraic Approach to Grammar, Polimetrica, Monza, Milan (2008)Google Scholar
  27. 27.
    Lambek, J.: Exploring Feature Agreement in French with Parallel Pregroup Computations. Journal of Logic, Language and Information 19, 75–88 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Lambek, J.: Compact Monoidal Categories from Linguistics to Physics. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 467–487. Springer (2011)Google Scholar
  29. 29.
    Moortgat, M.: Categorical Type Logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  30. 30.
    Preller, A., Lambek, J.: Free Compact 2-Categories. Mathematical Structures in Computer Science 17, 309–340 (2007)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sadrzadeh, M.: Pregroup Analysis of Persian Sentences. In: [15]Google Scholar
  32. 32.
    Sadrzadeh, M.: An Adventure into Hungarian Word Order with Cyclic Pregroups. In: Models, Logics, and Higher-Dimensional Categories, a tribute to the work of Michael Makkai, Centre de Recherches Mathématiques. Proceedings and Lecture Notes, vol. 53, pp. 263–275. American Mathematical Society (2011)Google Scholar
  33. 33.
    Staal, J.F.: Word Order in Sanskrit and Universal Grammar. D. Reidel Publishing Co., Dordrecht (1967)CrossRefGoogle Scholar
  34. 34.
    Whitney, W.D.: Sanskrit Grammar: including both the classical language, and the older dialects, of Veda and Brahamana, 2nd edn. Harvard University Press, Cambridge (1889)Google Scholar
  35. 35.
    Yetter, D.N.: Quantales and (non-Commutative) Linear Logic. Journal of Symbolic Logic 55, 41–64 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Claudia Casadio
    • 1
  • Mehrnoosh Sadrzadeh
    • 2
  1. 1.Dept. of PhilosophyChieti UniversityItaly
  2. 2.Queen Mary University of LondonUK

Personalised recommendations