Energy Savings on a Cloud-Based Opportunistic Infrastructure

  • Johnatan E. Pecero
  • Cesar O. Diaz
  • Harold Castro
  • Mario Villamizar
  • Germán Sotelo
  • Pascal Bouvry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8377)

Abstract

In this paper, we address energy savings on a Cloud-based opportunistic infrastructure. The infrastructure implements opportunistic design concepts to provide basic services, such as virtual CPUs, RAM and Disk while profiting from unused capabilities of desktop computer laboratories in a non-intrusive way.

We consider the problem of virtual machines consolidation on the opportunistic cloud computing resources. We investigate four workload packing algorithms that place a set of virtual machines on the least number of physical machines to increase resource utilization and to transition parts of the unused resources into a lower power states or switching off. We empirically evaluate these heuristics on real workload traces collected from our experimental opportunistic cloud, called UnaCloud. The final aim is to implement the best strategy on UnaCoud. The results show that a consolidation algorithm implementing a policy taking into account features and constraints of the opportunistic cloud saves energy more than 40% than related consolidation heuristics, over the percentage earned by the opportunistic environment.

Keywords

cloud computing green computing performance of system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosales, E., Castro, H., Villamizar, M.: Unacloud: Opportunistic cloud computing infrastructure as a service. In: Cloud Computing 2011, pp. 187–194. IARIA (2011)Google Scholar
  2. 2.
    Wang, L., Khan, S.U., Chen, D., Koodziej, J., Ranjan, R., Zhong Xu, C., Zomaya, A.: Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems 29(7), 1661–1670 (2013)CrossRefGoogle Scholar
  3. 3.
    Bilal, K., Khan, S., Madani, S., Hayat, K., Khan, M., Min-Allah, N., Kolodziej, J., Wang, L., Zeadally, S., Chen, D.: A survey on green communications using adaptive link rate. Cluster Computing 16(3), 575–589 (2013)CrossRefGoogle Scholar
  4. 4.
    Diaz, C., Castro, H., Villamizar, M., Pecero, J., Bouvry, P.: Energy-aware vm allocation on an opportunistic cloud infrastructure. In: Proceedings of the 2013 13th IEEE/ACM Int. Symposium CCGRID, pp. 663–670. IEEE Computer Society (2013)Google Scholar
  5. 5.
    Castro, H., Villamizar, M., Sotelo, G., Diaz, C., Pecero, J.E., Bouvry, P.: Green flexible opportunistic computing with task consolidation and virtualization. Cluster Computing, 1–13 (2012)Google Scholar
  6. 6.
    Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE 2009, pp. 41–50. ACM, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Feller, E., Rilling, L., Morin, C.: Snooze: A scalable and autonomic virtual machine management framework for private clouds. In: Proceedings of the 2012 12th IEEE/ACM Int. Symposium CCGRID, pp. 482–489. IEEE Computer Society, Washington, DC (2012)Google Scholar
  8. 8.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Li, B., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: Enacloud: An energy-saving application live placement approach for cloud computing environments. In: IEEE CLOUD, pp. 17–24. IEEE (2009)Google Scholar
  10. 10.
    Buyya, R., Beloglazov, A., Abawajy, J.H.: Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. In: Arabnia, H.R., Chiu, S.C., Gravvanis, G.A., Ito, M., Joe, K., Nishikawa, H., Solo, A.M.G. (eds.) PDPTA, pp. 6–20. CSREA Press (2010)Google Scholar
  11. 11.
    Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings of the 2011 IEEE/ACM 12th Int. GRID, pp. 26–33. IEEE Computer Society, Washington, DC (2011)Google Scholar
  12. 12.
    Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM Int. Conference CCGRID, pp. 577–578 (2010)Google Scholar
  13. 13.
    Castro, H., Villamizar, M., Sotelo, G., Diaz, C.O., Pecero, J.E., Bouvry, P., Khan, S.U.: Gfog: Green and flexible opportunistic grids. In: Khan, S.U., Wang, L., Zomaya, A.Y. (eds.) Scalable Computing and Communications, Theory and Practice. Wiley&Sons (forthcomming)Google Scholar
  14. 14.
    Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing (2011), http://research.microsoft.com/pubs/147927/VBPackingESA11.pdf (accessed July 20, 2013)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johnatan E. Pecero
    • 1
  • Cesar O. Diaz
    • 1
  • Harold Castro
    • 2
  • Mario Villamizar
    • 2
  • Germán Sotelo
    • 2
  • Pascal Bouvry
    • 1
  1. 1.University of LuxembourgLuxembourg-KirchbergLuxembourg
  2. 2.Universidad de los AndesBogotá D.C.Colombia

Personalised recommendations