TLDRet: A Temporal Semantic Facilitated Linked Data Retrieval Framework

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8388)

Abstract

Temporal features, such as date and time or time of an event, employ concise semantics for any kind of information retrieval, and therefore for linked data information retrieval. However, we have found that most linked data information retrieval techniques pay little attention on the power of temporal feature inclusion. We propose a keyword-based linked data information retrieval framework, called TLDRet, that can incorporate temporal features and give more concise results. Preliminary evaluation of our system shows promising performance.

References

  1. 1.
    Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time of triples in linked geospatial data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 259–274. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Chang, A.X., Manning, C.: SUTime: a library for recognizing and normalizing time expressions. In: Proceedings of the 8th International Conference on Language Resources and Evaluation, pp. 23–25 (2012)Google Scholar
  3. 3.
    Derczynski, L., Gaizauskas, R.J.: A corpus-based study of temporal signals. Computing Research Repository, abs/1203.5066 (2012)Google Scholar
  4. 4.
    Fry, E.B., Kress, J.E., Fountoukidis, D.L.: The Reading Teacher’s Book of Lists. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  5. 5.
    Gutierrez, C., Hurtado, C., Vaisman, R.: Temporal RDF. In: Proceedings of the 2nd European Semantic Web Conference, pp. 93–107 (2005)Google Scholar
  6. 6.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  7. 7.
    Khrouf, H., Milicic, V., Troncy, R.: EventMedia live: exploring events connections in real-time to enhance content. In: Proceedings of the Semantic Web Challenge, at the 11th International Conference on The Semantic Web (2012)Google Scholar
  8. 8.
    Mani, I., Wilson, D.G.: Robust temporal processing of news. In: Proceedings of the 38th Annual Meeting on Association for, Computational Linguistics, pp. 69–76 (2000)Google Scholar
  9. 9.
    Rahoman, M.-M., Ichise, R.: An automated template selection framework for keyword query over linked data. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 175–190. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the diversity and availability of temporal information in linked open data. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Saquete, E., González, J.L.V., Martínez-Barco, P., Muñoz, R., Llorens, H.: Enhancing QA systems with complex temporal question processing capabilities. J. Artif. Intell. Res. 35, 775–811 (2009)MATHGoogle Scholar
  12. 12.
    Shekarpour, S., Auer, S., Ngomo, A.-C. N., Gerber, D., Hellmann, S., Stadler, C.: Keyword-driven SPARQL query generation leveraging background knowledge. In: Proceedings of the 10th International Conference on Web, Intelligence, pp. 203–210 (2011)Google Scholar
  13. 13.
    Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Troncy, R., Malocha, B., Fialho, A.T.S.: Linking events with media. In: Proceedings of the 6th International Conference on Semantic Systems, pp. 1–4 (2010)Google Scholar
  15. 15.
    Vandenbussche, P.-Y., Teissédre, C.:. Events retrieval using enhanced semantic web knowledge. In: Proceedings of the Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web, pp. 112–116 (2011)Google Scholar
  16. 16.
    Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore: a scalable IR approach to search the web of data. J. Web Semant. 7(3), 177–188 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely yago: harvesting, querying, and visualizing temporal knowledge from wikipedia. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 697–700 (2010)Google Scholar
  18. 18.
    Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic queries-incremental query construction on the semantic web. J. Web Semant. 7(3), 166–176 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of InformaticsThe Graduate University for Advanced StudiesTokyoJapan
  2. 2.Principles of Informatics Research DivisionNational Institute of InformaticsTokyoJapan

Personalised recommendations