Multivariate Network Visualization pp 207-235

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8380) | Cite as

Scalability Considerations for Multivariate Graph Visualization

  • T. J. Jankun-Kelly
  • Tim Dwyer
  • Danny Holten
  • Christophe Hurter
  • Martin Nöllenburg
  • Chris Weaver
  • Kai Xu

Abstract

Real-world, multivariate datasets are frequently too large to show in their entirety on a visual display. Still, there are many techniques we can employ to show useful partial views-sufficient to support incremental exploration of large graph datasets. In this chapter, we first explore the cognitive and architectural limitations which restrict the amount of visual bandwidth available to multivariate graph visualization approaches. These limitations afford several design approaches, which we systematically explore. Finally, we survey systems and studies that exhibit these design strategies to mitigate these perceptual and architectural limitations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A large scale graph visualization system. IEEE Transactions on Visualization and Computer Graphics 12(5), 669–676 (2006)CrossRefGoogle Scholar
  2. 2.
    Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1) (2008)Google Scholar
  3. 3.
    Auber, D.: Tulip: A huge graph visualisation framework(2003); Mutzel, P., Junger, M. (eds.), http://hal.archives-ouvertes.fr/hal-00307626
  4. 4.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/3-540-28349-8_2CrossRefGoogle Scholar
  5. 5.
    Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.: Graphdice: A system for exploring multivariate social networks. Comput. Graph. Forum 29(3), 863–872 (2010)CrossRefGoogle Scholar
  6. 6.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visualization: Using vision to think. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  7. 7.
    Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann (January 1999)Google Scholar
  8. 8.
    Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-directed lombardi-style graph drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Cunningham, A., Xu, K., Thomas, B.H.: Seeing more than the graph – evaluation of multivariate graph visualization methods. In: Proceedings of the Workshop on Interactive Data Exploration and Knowledge Discovery (Part of International Working Conference on Advanced Visual Interfaces 2010), Rome, Italy, pp. 429–429 (2010)Google Scholar
  10. 10.
    Dickerson, M., Eppstein, D., Goodrich, M., Meng, J.: Confluent drawings: Visualizing non-planar diagrams in a planar way. Journal of Graph Algorithms and Applications 9(1), 31–52 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dörk, M., Riche, N., Ramos, G., Dumais, S.: PivotPaths: strolling through faceted information spaces. IEEE Transactions on Visualization and Computer Graphics 18(12), 2709–2718 (2012)CrossRefGoogle Scholar
  12. 12.
    Dwyer, T.: Two-and-a-half-dimensional Visualisation of Relational Networks. Ph.D. thesis, School of Information Technologies, Faculty of Science, University of Sydney (2005)Google Scholar
  13. 13.
    Dwyer, T., Henry Riche, N., Marriott, K., Mears, C.: Edge compression techniques for visualization of dense directed graphs. IEEE Transactions on Visualization and Computer Graphics 19(12), 2596–2605 (2013)CrossRefGoogle Scholar
  14. 14.
    Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.: Exploration of networks using overview+ detail with constraint-based cooperative layout. IEEE Transactions on Visualization and Computer Graphics 14(6), 1293–1300 (2008)CrossRefGoogle Scholar
  15. 15.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Dwyer, T., Mears, C., Morgan, K., Niven, T., Marriott, K., Wallace, M.: Improved optimal and approximate power graph compression for clearer visualisation of dense graphs. In: PacificVis 2014, pp. 105–112. IEEE (2014)Google Scholar
  17. 17.
    Elmqvist, N., Dragicevic, P., Fekete, J.D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph. 14(6), 1148–1539 (2008)CrossRefGoogle Scholar
  18. 18.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4), 439–452 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 352–363. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Transactions on Visualization and Computer Graphics 17(12), 2364–2373 (2011)CrossRefGoogle Scholar
  22. 22.
    Fikkert, W., D’Ambros, M., Bierz, T., Jankun-Kelly, T.J.: Interacting with visualizations. In: Kerren, A., Ebert, A., Meyer, J. (eds.) Human-Centered Visualization Environments 2006. LNCS, vol. 4417, pp. 77–162. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Fisher, D.: Using egocentric networks to understand communication. IEEE Internet Computing 9(5), 20–28 (2005)CrossRefGoogle Scholar
  24. 24.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice in C, 2nd edn. Addison-Wesley (1996)Google Scholar
  25. 25.
    Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010), http://www.sciencedirect.com/science/article/pii/S0370157309002841MathSciNetCrossRefGoogle Scholar
  26. 26.
    Frishman, Y., Tal, A.: Multi-level graph layout on the gpu. IEEE Transactions on Visualization and Computer Graphics 13(6), 1310–1319 (2007)CrossRefGoogle Scholar
  27. 27.
    Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: Proc. PacificVis, pp. 187–194 (2011)Google Scholar
  28. 28.
    Gansner, E.R., Hu, Y.: Efficient node overlap removal using a proximity stress model. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 206–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Gansner, E.R., Koren, Y., North, S.C.: Topological fisheye views for visualizing large graphs. IEEE Transactions on Visualization and Computer Graphics 11(4), 457–468 (2005)CrossRefGoogle Scholar
  30. 30.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Information Visualization 4(2), 114–135 (2005)CrossRefGoogle Scholar
  31. 31.
    Günnemann, S., Boden, B., Seidl, T.: DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS (LNAI), vol. 6911, pp. 565–580. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-23780-5_46CrossRefGoogle Scholar
  32. 32.
    Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 235–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Hadlak, S., Schumann, H., Cap, C.H., Wollenberg, T.: Supporting the visual analysis of dynamic networks by clustering associated temporal attributes. IEEE Transactions on Visualization and Computer Graphics 19(12), 2267–2276 (2013)CrossRefGoogle Scholar
  34. 34.
    van Ham, F., Perer, A.: Search, show context, expand on demand: Supporting large graph exploration with degree-of-interest. IEEE Transactions on Visualization and Computer Graphics 15(6), 953–960 (2009)CrossRefGoogle Scholar
  35. 35.
    He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce framework on graphics processors. In: Proceedings of the 17th international conference on Parallel architectures and compilation techniques, PACT 2008, pp. 260–269. ACM Press, New York (2008), http://doi.acm.org/10.1145/1454115.1454152Google Scholar
  36. 36.
    Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 33–40. IEEE, Minneapolis (October 2005)Google Scholar
  37. 37.
    Heer, J., Perer, A.: Orion: A system for modeling, transformation and visualization of multidimensional heterogeneous networks. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 51–60. IEEE (2011)Google Scholar
  38. 38.
    Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: A hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics 13(6), 1302–1309 (2007)CrossRefGoogle Scholar
  39. 39.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE TVCG 12(5), 741–748 (2006)Google Scholar
  40. 40.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comp. Graph. Forum 28(3), 670–677 (2009)CrossRefGoogle Scholar
  41. 41.
    Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica Journal 10(1), 37–71 (2005)MathSciNetGoogle Scholar
  42. 42.
    Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge graphs using a modified spring algorithm. Journal of Visual Languages & Computing 9(6), 623–645 (1998)CrossRefGoogle Scholar
  43. 43.
    Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent drawings. Algorithmica 47(4), 465–479 (2007)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. Comp. Graph. Forum 31(3 pt. 1), 865–874 (2012), http://dx.doi.org/10.1111/j.1467-8659.2012.03079.xCrossRefGoogle Scholar
  45. 45.
    Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and sequence graphs. In: Proceedings of the PacificVis 2013 (2013)Google Scholar
  46. 46.
    Hurter, C., Telea, A., Ersoy, O.: Moleview: An attribute and structure-based semantic lens for large element-based plots. IEEE Transactions on Visualization and Computer Graphics 17(12), 2600–2609 (2011), http://dx.doi.org/10.1109/TVCG.2011.223CrossRefGoogle Scholar
  47. 47.
    Hurter, C., Tissoires, B., Conversy, S.: Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics 15(6), 1017–1024 (2009), http://dx.doi.org/10.1109/TVCG.2009.145CrossRefGoogle Scholar
  48. 48.
    Jia, Y., Hoberock, J., Garland, M., Hart, J.: On the visualization of social and other scale-free networks. IEEE Transactions on Visualization and Computer Graphics 14(6), 1285–1292 (2008)CrossRefGoogle Scholar
  49. 49.
    Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour enhanced star plot glyphs – can salient shape characteristics be overcome? Cartographica 44(3), 217–231 (2009)CrossRefGoogle Scholar
  50. 50.
    Klippel, A., Weaver, C., Robinson, A.C.: Analyzing cognitive conceptualizations using interactive visual environments. Cartography and Geographic Information Science 38(1), 52–68 (2011)CrossRefGoogle Scholar
  51. 51.
    Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles. Comp. Graph. Forum 29(3), 432–439 (2010)CrossRefGoogle Scholar
  52. 52.
    Liu, Z., Navathe, S.B., Stasko, J.T.: Network-based visual analysis of tabular data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST 2011), pp. 41–50. IEEE (2011)Google Scholar
  53. 53.
    McDonnel, B., Elmqvist, N.: Towards utilizing gpus in information visualization: A model and implementation of image-space operations. IEEE Transactions on Visualization and Computer Graphics 15(6), 1105–1112 (2009), http://dx.doi.org/10.1109/TVCG.2009.191CrossRefGoogle Scholar
  54. 54.
    Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63(2), 81–97 (1956)CrossRefGoogle Scholar
  55. 55.
    Millodot, M.: Dictionary of Optometry and Visual Science. Butterworth-Heinemann (1997)Google Scholar
  56. 56.
    Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-aware navigation in large networks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2319–2328. ACM (2009)Google Scholar
  57. 57.
    Nguyen, Q., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 566–568. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  58. 58.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26(1), 80–113 (2007), http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.xCrossRefGoogle Scholar
  59. 59.
    Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bundles. In: Speckmann, B., van Kreveld, M. (eds.) GD 2011. LNCS, vol. 7034, pp. 136–147. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  60. 60.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  61. 61.
    Purchase, H.C., Carrington, D., Allder, J.-A.: Experimenting with aesthetics-based graph layout. In: Anderson, M., Cheng, P.C.H., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI), vol. 1889, pp. 498–501. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  62. 62.
    Purchase, H.C., Hamer, J., Nöllenburg, M., Kobourov, S.G.: On the usability of lombardi graph drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 451–462. Springer, Heidelberg (2013)Google Scholar
  63. 63.
    Quercini, G., Ancona, M.: Confluent drawing algorithms using rectangular dualization. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 341–352. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  64. 64.
    Riche, N.H., Dwyer, T., Lee, B., Carpendale, S.: Exploring the design space of interactive link curvature in network diagrams. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 506–513. ACM (2012)Google Scholar
  65. 65.
    Roberts, J.C.: Multiple-View and Multiform Visualization. In: Erbacher, R., Pang, A., Wittenbrink, C., Roberts, J. (eds.) Proceedings of SPIE Visual Data Exploration and Analysis VII, vol. 3960, pp. 176–185 (January 2000) Google Scholar
  66. 66.
    Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein networks with power graph analysis. PLoS computational biology 4(7), e1000108 (2008)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Scheepens, R., Willems, N., van de Wetering, H., Andrienko, G., Andrienko, N., van Wijk, J.J.: Composite density maps for multivariate trajectories. IEEE Transactions on Visualization and Computer Graphics 17(12), 2518–2527 (2011), http://dx.doi.org/10.1109/TVCG.2011.181CrossRefGoogle Scholar
  68. 68.
    Shadoan, R., Weaver, C.: Visual analysis of higher-order conjunctive relationships in multidimensional data using a hypergraph query system. IEEE Transactions on Visualization and Computer Graphics 19(12), 2070–2079 (2013)CrossRefGoogle Scholar
  69. 69.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE (1996)Google Scholar
  70. 70.
    Stasko, J., Görg, C., Liu, Z.: Jigsaw: Supporting investigative analysis through interactive visualization. Information Visualization 7(2), 118–132 (2008)CrossRefGoogle Scholar
  71. 71.
    Stell, A.J.: Granulation for graphs. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 417–432. Springer, Heidelberg (1999)Google Scholar
  72. 72.
    Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for general-purpose computing: a framework and analysis. In: Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO, vol. 35, pp. 306–317. IEEE Computer Society Press, Los Alamitos (2002), http://dl.acm.org/citation.cfm?id=774861.774894Google Scholar
  73. 73.
    Tominski, C., Abello, J., Schumann, H.: CGV–an interactive graph visualization system. Computers & Graphics 33(6), 660–678 (2009)CrossRefGoogle Scholar
  74. 74.
    Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large, high resolution displays. In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology (UIST 2005), pp. 33–42. ACM Press, New York (2005)CrossRefGoogle Scholar
  75. 75.
    Ward, M.O., Grinstein, G.G., Keim, D.A.: Interactive Data Visualization-Foundations, Techniques, and Applications. A K Peters (2010)Google Scholar
  76. 76.
    Ware, C: Information Visualization: Perception for Design, 2nd edn. Morgan Kaufmann (2004)Google Scholar
  77. 77.
    Ware, C., Bobrow, R.: Supporting visual queries on medium-sized node-link diagrams. Information Visualization 4(1), 49–58 (2005)CrossRefGoogle Scholar
  78. 78.
    Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Trans. Appl. Percept. 5(1), 2:1–2:15 (2008)CrossRefGoogle Scholar
  79. 79.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar
  80. 80.
    Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
  81. 81.
    Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 811–819. ACM (2006)Google Scholar
  82. 82.
    Weaver, C.: Building highly-coordinated visualizations in Improvise. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2004), pp. 159–166. IEEE Computer Society, Austin (October 2004)CrossRefGoogle Scholar
  83. 83.
    Weaver, C.: Visualizing coordination in situ. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2005), pp. 165–172. IEEE Computer Society, Minneapolis (October 2005)Google Scholar
  84. 84.
    Weaver, C.: Metavisual exploration and analysis of DEVise coordination in Improvise. In: Proceedings of the International Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV), pp. 79–90. IEEE Computer Society, London (July 2006)CrossRefGoogle Scholar
  85. 85.
    Weaver, C.: Cross-filtered views for multidimensional visual analysis. IEEE Transactions on Visualization and Computer Graphics 16(2), 192–204 (2010)CrossRefGoogle Scholar
  86. 86.
    Weaver, C.: Multidimensional data dissection using attribute relationship graphs. In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 75–82. IEEE, Salt Lake City (October 2010)Google Scholar
  87. 87.
    Westheimer, G.: Visual acuity. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye: Clinical Applications, 10th edn., ch. 17, pp. 453–469. Elsevier (1987)Google Scholar
  88. 88.
    Wikipedia: List of display by pixel density: Apple, http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density#Apple (last accessed November, 2013)
  89. 89.
    Wolfe, J.M.: Guided search 2.0: A revised model of visual search. Psychonomonic Bulletin & Review 1(2), 202–238 (1994)CrossRefGoogle Scholar
  90. 90.
    Wolfe, J.M., Cave, K.R., Franzel, S.L.: Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology 15(3), 419–433 (1989)Google Scholar
  91. 91.
    Wu, Y., Takatsuka, M.: Visualizing multivariate networks: A hybrid approach. In: Proceedings of the IEEE Pacific Visualization Symposium (PacificVis 2008), pp. 223–230 (2008)Google Scholar
  92. 92.
    Xu, K., Cunningham, A., Hong, S.H., Thomas, B.H.: GraphScape: integrated multivariate network visualization. In: Proceedings of the 6th International Asia-Pacific Symposium on Visualization, Sydney, Australia, Febraury 2007, pp. 33–40 (2007)Google Scholar
  93. 93.
    Xu, K., Rooney, C., Passmore, P., Ham, D.H., Nguyen, P.: A user study on curved edges in graph visualization. IEEE Transactions on Visualization and Computer Graphics 18(12), 2449–2456 (2012)CrossRefGoogle Scholar
  94. 94.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729 (2009), http://dl.acm.org/citation.cfm?id=1687627.1687709CrossRefGoogle Scholar
  95. 95.
    Zhou, Y., Cheng, H., Yu, J.: Clustering large attributed graphs: An efficient incremental approach. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 689–698 (2010)Google Scholar
  96. 96.
    Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of large graphs. IEEE Transactions on Visualization and Computer Graphics 18(12), 2486–2495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • T. J. Jankun-Kelly
  • Tim Dwyer
  • Danny Holten
  • Christophe Hurter
  • Martin Nöllenburg
  • Chris Weaver
  • Kai Xu

There are no affiliations available

Personalised recommendations