Granularity in Angle: Observability in Scattering Experiments

  • Seth A. MajorEmail author
  • Jake C. Zappala
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)


Geometry is quantized in loop quantum gravity. As a step toward building a detailed phenomenology of this discrete geometry a model of an atom of geometry is reviewed. The model, which preserves local Lorentz invariance, exhibits a lever arm that raises the scale at which the granularity in angle becomes apparent. The signature of this effect is a systematic shift of observed angles in processes such as high energy particle scattering experiments. To check assumptions in the model, coherent states of a simple atom of spatial geometry are explored using information intrinsic to the quantum state.


Coherent State Angle Operator Planck Scale Loop Quantum Gravity Quantum Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dittrich, B., Thiemann, T.: Are the spectra of geometrical operators in loop quantum gravity really discrete? J. Math. Phys. 50, 012503 (2009). doi: 10.1063/1.3054277 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Rovelli, C.: Comment on ‘Are the spectra...’. ArXiv e-prints arXiv:0708.2481 [gr-qc] (2007)
  3. 3.
    Liberati, S.: Lorentz breaking effective field theory and observational tests. ArXiv e-prints arXiv:1203.4105 [gr-qc] (2012)
  4. 4.
    Girelli, F., S., H.F.M.: Loop quantum gravity phenomenology: linking loops to observational physics. SIGMA 8, 098 (2012). doi: 10.3842/SIGMA.2012.098 Google Scholar
  5. 5.
    Rovelli, C., Speziale, S.: Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction. Phys. Rev. D 67, 064019 (2003). doi: 10.1103/PhysRevD.67.064019 ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Major, S.: Shape in an atom of space: exploring quantum geometry phenomenology. Class. Quantum Grav. 27, 225012 (2010). doi: 10.1088/0264-9381/27/22/225012 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Major, S.: Operators for quantized directions. Class. Quantum Grav. 16, 3859 (1999). doi: 10.1088/0264-9381/16/12/307 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Major, S., Seifert, M.: Modeling space with an atom of quantum geometry. Class. Quantum Grav. 19, 2211 (2002). doi: 10.1088/0264-9381/19/8/311 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Major, S.: Quantum geometry phenomenology: angle and semiclassical states. J. Phys.: Conf. Ser. 360, 012061 (2012). doi: 10.1088/1742-6596/360/1/012061 ADSGoogle Scholar
  10. 10.
    Rovelli, C.: Zakopane lectures on loop gravity. ArXiv e-prints arXiv:1102.3660[gr-qc] (2011)
  11. 11.
    Seifert, M.: Angle and volume studies in quantized space. ArXiv e-prints arXiv:gr-qc/0108047 (2001)
  12. 12.
    Bianchi, E., Doná, P., Speziale, S.: Polyhedra in loop quantum gravity. Phys. Rev. D 83(4), 044035 (2011). doi: 10.1103/PhysRevD.83.044035 ADSCrossRefGoogle Scholar
  13. 13.
    Bianchi, L.: Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. E. Spoerri, Pisa (1918)Google Scholar
  14. 14.
    Drell, S.: Quantum electrodynamics at small distances. Ann. Phys. 4, 75 (1958). doi: 10.1016/0003-4916(58)90038-1 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory Beyond, pp. 151–180. Cambridge University Press, Cambridge (1971)Google Scholar
  16. 16.
    Moussouris, J.: Quantum models as space-time based on recoupling theory. Ph.D. thesis, Oxford University, Oxford (1983)Google Scholar
  17. 17.
    Zappala, J.: Semiclassical states for an atom of geometry. In preparation (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsHamilton CollegeClintonUSA
  2. 2.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations