Advertisement

Practical Distinguishers against 6-Round Keccak-f Exploiting Self-Symmetry

  • Sukhendu Kuila
  • Dhiman Saha
  • Madhumangal Pal
  • Dipanwita Roy Chowdhury
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8469)

Abstract

This paper presents new distinguishers against Keccak-f[1600] permutation reaching up to 6-rounds. The main intuition is to exploit the self-symmetry of the internal state of Keccak. Formal analysis reveals that the proposed distinguisher can penetrate up to 3 rounds and the penetration depends only on the hamming weight of the round-constant of the initial round. New strategies developed in this work, when combined, are shown to distinguish up to 5-rounds with a probability of 1 using a single query. Finally, the extension to 6-rounds with a complexity of 211 gives us the most efficient 6-round distinguisher reported in literature. All claims and formal arguments conform to the results obtained by extensive experimentation.

Keywords

distinguisher keccak hash function analysis internal differentials self-symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, D.: Second preimages for 6 (7?(8??)) rounds of Keccak? (November 2010), http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
  2. 2.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash Workshop 2007 (May 2007)Google Scholar
  3. 3.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission. Submission to NIST, Round 3 (2011), http://keccak.noekeon.org/Keccak-submission-3.pdf
  4. 4.
    Chernoff, H.: A Note on an Inequality Involving the Normal Distribution. The Annals of Probability 9(3), 533–535 (1981), http://dx.doi.org/10.1214/aop/1176994428 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Daemen, J., Van Assche, G.: Differential propagation analysis of keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-34047-5_24 CrossRefGoogle Scholar
  6. 6.
    Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials. Cryptology ePrint Archive, Report 2012/672 (2012), http://eprint.iacr.org/
  7. 7.
    Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-34047-5_25 CrossRefGoogle Scholar
  8. 8.
    Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f permutation. Cryptology ePrint Archive, Report 2011/023 (2011), http://eprint.iacr.org/2011/023.pdf
  9. 9.
    Duan, M., Lai, X.: Improved zero-sum distinguisher for full round keccak-f permutation. Chinese Science Bulletin 57(6), 694–697 (2012), http://dx.doi.org/10.1007/s11434-011-4909-x CrossRefGoogle Scholar
  10. 10.
    Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: Application to Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 402–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Lathrop, J.: Cube attacks on cryptographic hash functions. Master’s thesis (2009), http://www.cs.rit.edu/~jal6806/thesis/
  12. 12.
    Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. Cryptology ePrint Archive, Report 2012/546 (2012), http://eprint.iacr.org/
  13. 13.
    Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash functions. IACR Cryptology ePrint Archive 2010, 285 (2010), http://dblp.uni-trier.de/db/journals/iacr/iacr2010.html#MorawieckiS10
  14. 14.
    Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sukhendu Kuila
    • 1
  • Dhiman Saha
    • 2
  • Madhumangal Pal
    • 1
  • Dipanwita Roy Chowdhury
    • 2
  1. 1.Department of MathematicsVidyasagar UniversityIndia
  2. 2.Department of Computer Science and EngineeringIIT KharagpurIndia

Personalised recommendations