Advertisement

Differential Biases in Reduced-Round Keccak

  • Sourav Das
  • Willi Meier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8469)

Abstract

The Keccak hash function is the winner of the SHA-3 competition. In this paper, we examine differential propagation properties of Keccak constituent functions. We discover that low-weight differentials produce a number of biased and fixed difference bits in the state after two rounds and provide a theoretical explanation for the existence of such a bias. We also describe several other propagation properties of Keccak with respect to differential cryptanalysis. Combining our propagation analysis with results from the existing literature we find distinguishers on six rounds of the Keccak hash function with complexity 252 for the first time in this paper.

Keywords

SHA-3 Propagation Analysis Double-kernel TDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi. NIST Mailing List (2009)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: CCS, Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)Google Scholar
  3. 3.
    Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of keccak? NIST Mailing List (2010)Google Scholar
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission. Submission to NIST, Round 3 (2011)Google Scholar
  5. 5.
    Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Boura, C., Canteaut, A., De Cannière, C.: Higher Order Differential Properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition (2012), http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Round3ReportNISTIR7896.pdf
  8. 8.
    Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dinur, I., Dunkelman, O., Shamir, A.: Improved Practical Attacks on Round-Reduced Keccak. To appear in Journal of CryptologyGoogle Scholar
  10. 10.
    Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials. In: FSE 2013. LNCS (2013)Google Scholar
  12. 12.
    Duan, M., Lai, X.: Improved Zero-Sum Distinguisher for Full Round Keccak-f Permutation. Cryptology ePrint Archive, Report 2011/023 (2011)Google Scholar
  13. 13.
    Duc, A., et al.: Unaligned Rebound Attack – Application to Keccak, http://eprint.iacr.org/2011/420
  14. 14.
    Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Preimage attacks on the round-reduced Keccak with the aid of differential cryptanalysis. Cryptology ePrint Archive, http://eprint.iacr.org/2013/561.pdf
  15. 15.
    Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: FSE (2013), http://eprint.iacr.org/2012/546.pdf
  16. 16.
    National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard (April 1995), http://csrc.nist.gov
  17. 17.
    Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Rivest, R.L.: The MD5 message-digest algorithm. Request for Comments (RFC) 1320, Internet Activities Board, Internet Privacy Task Force (April 1992)Google Scholar
  20. 20.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sourav Das
    • 1
  • Willi Meier
    • 1
  1. 1.Alcatel-Lucent India Ltd. and FHNWWindischSwitzerland

Personalised recommendations