Advertisement

Anonymous IBE from Quadratic Residuosity with Improved Performance

  • Michael Clear
  • Hitesh Tewari
  • Ciarán McGoldrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8469)

Abstract

Identity Based Encryption (IBE) has been constructed from bilinear pairings, lattices and quadratic residuosity. The latter is an attractive basis for an IBE owing to the fact that it is a well-understood hard problem from number theory. Cocks constructed the first such scheme, and subsequent improvements have been made to achieve anonymity and improve space efficiency. However, the anonymous variants of Cocks’ scheme thus far are all less efficient than the original. In this paper, we present a new universally-anonymous IBE scheme based on the quadratic residuosity problem. Our scheme has better performance than the universally anonymous scheme from Ateniese and Gasti (CT-RSA 2009) at the expense of more ciphertext expansion.

Keywords

Identity Based Encryption Anonymous IBE Cocks Scheme Quadratic Residuosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology CRYPTO - 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)Google Scholar
  2. 2.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM, New York (2008)Google Scholar
  5. 5.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657. IEEE Computer Society (2007)Google Scholar
  11. 11.
    Ateniese, G., Gasti, P.: Universally anonymous IBE based on the quadratic residuosity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Hayashi, R., Tanaka, K.: Universally anonymizable public-key encryption. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Clear, M., Hughes, A., Tewari, H.: Homomorphic encryption with access policies: Characterization and new constructions. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 61–87. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Jhanwar, M.P., Barua, R.: A variant of boneh-gentry-hamburg’s pairing-free identity based encryption scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 314–331. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Barua, R., Jhanwar, M.: On the number of solutions of the equation rx 2 + sy 2 = 1 (mod n). Indian Journal of Statistical 2010 72-A (pt. 1), 226–236 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Clear
    • 1
  • Hitesh Tewari
    • 1
  • Ciarán McGoldrick
    • 1
  1. 1.School of Computer Science and StatisticsTrinity College DublinIreland

Personalised recommendations