Exploring and Controlling Fragmentation of Polyatomic Molecules with Few-Cycle Laser Pulses

  • Markus KitzlerEmail author
  • Xinhua Xie
  • Andrius Baltuška
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 109)


The removal of electrons from polyatomic molecules by ionization with intense, ultrashort laser pulses may trigger complex restructuring and fragmentation dynamics. Depending on the valence-shell from which the electrons are removed the molecular ion might be put into a certain dissociative or binding state by the ionization process. With control over the ionization process it might thus be possible to gain control over the subsequent restructuring and fragmentation process on a purely electronic level. Here we introduce two conceptually similar schemes that allow controlling the outcome of molecular restructuring and fragmentation processes in polyatomic molecules on sub-femtosecond time-scales. The first one involves recollision double ionization in few-cycle laser fields with a known carrier-envelope phase (CEP). We demonstrate experimentally CEP-control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene). As the recollision energy for a given intensity sensitively depends on the CEP, tuning of the CEP allows controlling the removal of inner-valence electrons and the controlled population of dissociative excited states. The second control scheme uses the strong preponderance of ionization from specific molecular orbitals to the alignment of the molecular axis with respect to the laser polarization direction for determining which valence level the electrons are removed from. We demonstrate experimental control over different two-body fragmentation and dissociation pathways from the cation and the dication of the acetylene molecule using the field-free alignment angle as a control knob. Finally, we turn from the demonstration of control schemes working at sub-femtosecond time-scales, for which the nuclear dynamics following the ionization are not essential, to the investigation of the coupled nuclear-electronic dynamics that in general take place for longer pulse durations. We explore experimentally the mechanism behind the surprisingly high charge states recently observed in the ionization of hydrocarbon molecules that have been explained by a multi-bond version of the well known enhanced-ionization (EI) mechanism taking place in parallel at many C–H bonds. Our experimental results are in agreement with the proposed multi-bond version of EI.


Polyatomic Molecule High Charge State Double Ionization Coulomb Explosion Kinetic Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding by the Austrian Science Fund (FWF) under grants P21463-N22, SFB049-Next Lite and I274-N16, and by the ERC within the SIRG scheme is gratefully acknowledged. We thank K. Doblhoff-Dier, S. Gräfe, H.-L. Xu, T. Rathje, G. G. Paulus, S. Bubin, K. Varga, E. Lötstedt, and K. Yamanouchi for contributions and discussions.


  1. 1.
    C. Guo, M. Li, J. Nibarger, G. Gibson, Phys. Rev. A 58(6), R4271 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    X. Tong, Z. Zhao, C. Lin, Phys. Rev. A 66(3), 033402 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    J. Muth-Böhm, A. Becker, F. Faisal, Phys. Rev. Lett. 85(11), 2280 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    D. Pavičić, K. Lee, D. Rayner, P. Corkum, D. Villeneuve, Phys. Rev. Lett. 98(24), 243001 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Alnaser, S. Voss, X. Tong, C. Maharjan, P. Ranitovic, B. Ulrich, T. Osipov, B. Shan, Z. Chang, C. Cocke, Phys. Rev. Lett. 93(11), 113003 (2004)Google Scholar
  6. 6.
    D. Mathur, A. Dharmadhikari, F. Rajgara, J. Dharmadhikari, Phys. Rev. A 78(1), 013405 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    L. Holmegaard, J.L. Hansen, L. Kalhøj, S. Louise Kragh, H. Stapelfeldt, F. Filsinger, J. Küpper, G. Meijer, D. Dimitrovski, M. Abu-samha, C.P.J. Martiny, L. Bojer Madsen, Nat. Phys. 6(6), 428 (2010)CrossRefGoogle Scholar
  8. 8.
    J.L. Hansen, L. Holmegaard, J.H. Nielsen, H. Stapelfeldt, D. Dimitrovski, L.B. Madsen, J. Phys. B: At. Mol. Opt. Phys. 45(1), 015101 (2012)Google Scholar
  9. 9.
    A. Talebpour, A. Bandrauk, J. Yang, S. Chin, Chem. Phys. Lett. 313(5–6), 789 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    B.K. McFarland, J.P. Farrell, P.H. Bucksbaum, M. Gühr, Science (New York, N.Y.) 322(5905), 1232 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    P. Hoff, I. Znakovskaya, S. Zherebtsov, M.F. Kling, R. Vivie-Riedle, Appl. Phys. B 98(4), 659 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Akagi, T. Otobe, A. Staudte, A. Shiner, F. Turner, R. Dörner, D.M. Villeneuve, P.B. Corkum, Science (New York, N.Y.) 325(5946), 1364 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    C. Wu, H. Zhang, H. Yang, Q. Gong, D. Song, H. Su, Phys. Rev. A 83(3), 033410 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Boguslavskiy, J. Mikosch, A. Gijsbertsen, M. Spanner, S. Patchkovskii, N. Gador, M.J.J. Vrakking, A. Stolow, Science (New York, N.Y.) 335(6074), 1336 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Lezius, V. Blanchet, D. Rayner, D. Villeneuve, A. Stolow, M. Ivanov, Phys. Rev. Lett. 86(1), 51 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lezius, V. Blanchet, M.Y. Ivanov, A. Stolow, J. Chem. Phys. 117(4), 1575 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    A. Markevitch, S. Smith, D. Romanov, H. Bernhard Schlegel, M. Ivanov, R. Levis, Phys. Rev. A 68(1), 011402(R) (2003)Google Scholar
  18. 18.
    I. Litvinyuk, F. Légaré, P. Dooley, D. Villeneuve, P. Corkum, J. Zanghellini, A. Pegarkov, C. Fabian, T. Brabec, Phys. Rev. Lett. 94(3), 033003 (2005)Google Scholar
  19. 19.
    H.W. van der Hart, J. Phys. B: At. Mol. Opt. Phys. 33(20), L699 (2000)CrossRefGoogle Scholar
  20. 20.
    V.L.B.D. Jesus, B. Feuerstein, K. Zrost, D. Fischer, A. Rudenko, F. Afaneh, C.D. Schröter, R. Moshammer, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 37(8), L161 (2004)Google Scholar
  21. 21.
    A. Rudenko, K. Zrost, B. Feuerstein, V. de Jesus, C. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 93(25), 253001 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    T. Ikuta, K. Hosaka, H. Akagi, A. Yokoyama, K. Yamanouchi, F. Kannari, R. Itakura, J. Phys. B: At. Mol. Opt. Phys. 44(19), 191002 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. Xie, K. Doblhoff-Dier, S. Roither, M.S. Schöffler, D. Kartashov, H. Xu, T. Rathje, G.G. Paulus, A. Baltuška, S. Gräfe, M. Kitzler, Phys. Rev. Lett. 109(24), 243001 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Seideman, M. Ivanov, P. Corkum, Phys. Rev. Lett. 75(15), 2819 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    T. Zuo, A.D. Bandrauk, Phys. Rev. A 52(4), R2511 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    L. Frasinski, K. Codling, P. Hatherly, J. Barr, I. Ross, W. Toner, Phys. Rev. Lett. 58(23), 2424 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    K. Codling, L.J. Frasinski, P.A. Hatherly, J. Phys. B: At. Mol. Opt. Phys. 22(12), L321 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    D. Strickland, Y. Beaudoin, P. Dietrich, P. Corkum, Phys. Rev. Lett. 68(18), 2755 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    C. Cornaggia, D. Normand, J. Morellec, J. Phys. B: At. Mol. Opt. Phys. 25(17), L415 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    M. Schmidt, D. Normand, C. Cornaggia, Phys. Rev. A 50(6), 5037 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    E. Constant, H. Stapelfeldt, P.B. Corkum, Phys. Rev. Lett. 76(22), 4140 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    A. Alnaser, X. Tong, T. Osipov, S. Voss, C. Maharjan, P. Ranitovic, B. Ulrich, B. Shan, Z. Chang, C. Lin, C. Cocke, Phys. Rev. Lett. 93(18), 183202 (2004)Google Scholar
  33. 33.
    T. Ergler, B. Feuerstein, A. Rudenko, K. Zrost, C. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 97(10), 103004 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    I. Bocharova, R. Karimi, E. Penka, J.P. Brichta, P. Lassonde, X. Fu, J.C. Kieffer, A. Bandrauk, I. Litvinyuk, J. Sanderson, F. Légaré, Phys. Rev. Lett. 107(6), 063201 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, R. Dörner, Nature 405(6787), 658 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    A. Staudte, C. Ruiz, M. Schöffler, S. Schössler, D. Zeidler, T. Weber, M. Meckel, D. Villeneuve, P. Corkum, A. Becker, R. Dörner, Phys. Rev. Lett. 99(26), 263002 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A. Rudenko, V. de Jesus, T. Ergler, K. Zrost, B. Feuerstein, C. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 99(26), 263003 (2007)Google Scholar
  38. 38.
    B. Bergues, M. Kübel, N.G. Johnson, B. Fischer, N. Camus, K.J. Betsch, O. Herrwerth, A. Senftleben, A.M. Sayler, T. Rathje, T. Pfeifer, I. Ben-Itzhak, R.R. Jones, G.G. Paulus, F. Krausz, R. Moshammer, J. Ullrich, M.F. Kling, Nat. Commun. 3(may), 813 (2012)Google Scholar
  39. 39.
    S. Roither, X. Xie, D. Kartashov, L. Zhang, M. Schöffler, H. Xu, A. Iwasaki, T. Okino, K. Yamanouchi, A. Baltuska, M. Kitzler, Phys. Rev. Lett. 106(16), 163001 (2011)Google Scholar
  40. 40.
    M.F. Kling, C. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science (New York, N.Y.) 312(5771), 246 (2006)Google Scholar
  41. 41.
    M. Kling, C. Siedschlag, I. Znakovskaya, A. Verhoef, S. Zherebtsov, F. Krausz, M. Lezius, M. Vrakking, Mol. Phys. 106(2–4), 455 (2008)Google Scholar
  42. 42.
    I. Znakovskaya, P. von den Hoff, G. Marcus, S. Zherebtsov, B. Bergues, X. Gu, Y. Deng, M. Vrakking, R. Kienberger, F. Krausz, R. de Vivie-Riedle, M. Kling, Phys. Rev. Lett. 108(6), 063002 (2012)Google Scholar
  43. 43.
    M. Kremer, B. Fischer, B. Feuerstein, V.L.B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 103(21), 213003 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    B. Fischer, M. Kremer, T. Pfeifer, B. Feuerstein, V. Sharma, U. Thumm, C. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 105(22), 223001 (2010)Google Scholar
  45. 45.
    I. Znakovskaya, P. von den Hoff, N. Schirmel, G. Urbasch, S. Zherebtsov, B. Bergues, R. de Vivie-Riedle, K.M. Weitzel, M.F. Kling, Phys. Chem. Chem. Phys.: PCCP 13(19), 8653 (2011)Google Scholar
  46. 46.
    I. Znakovskaya, P. von den Hoff, S. Zherebtsov, A. Wirth, O. Herrwerth, M. Vrakking, R. de Vivie-Riedle, M. Kling, Phys. Rev. Lett. 103(10), 103002 (2009)Google Scholar
  47. 47.
    Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, Q. Gong, Phys. Rev. Lett. 106(7), 073004 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    P. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    F. Lindner, G. Paulus, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Phys. Rev. Lett. 92(11), 113001 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330(2–3), 95 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    L. Zhang, S. Roither, X. Xie, D. Kartashov, M. Schöffler, H. Xu, A. Iwasaki, S. Gräfe, T. Okino, K. Yamanouchi, A. Baltuska, M. Kitzler, J. Phys. B: At. Mol. Opt. Phys. 45(8), 085603 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    C. Maharjan, A. Alnaser, X. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I. Litvinyuk, C. Cocke, Phys. Rev. A 72(4), 041403 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    C. Smeenk, J.Z. Salvail, L. Arissian, P.B. Corkum, C.T. Hebeisen, A. Staudte, Opt. Express 19(10), 9336 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    T.H. Dunning, J. Chem. Phys. 90(2), 1007 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    P.J. Knowles, H.J. Werner, Chem. Phys. Lett. 115(3), 259 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    H.J. Werner, P.J. Knowles, J. Chem. Phys. 89(9), 5803 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    P.J. Knowles, H.J. Werner, Chem. Phys. Lett. 145(6), 514 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    H. Lischka, R. Shepard, I. Shavitt, R.M. Pitzer, M. Dallos, T. Müller, P.G. Szalay, F.B. Brown, R. Ahlrichs, H.J. Böhm, A. Chang, D.C. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, S. Irle, G. Kedziora, T. Kovar, V. Parasuk, M.J.M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E.A. Stahlberg, J.G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D.R. Yarkony, S.R. Brozell, E.V. Beck, J.P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, J.J. Szymczak, COLUMBUS, an ab initio electronic structure program, Release 7.0 (2012)Google Scholar
  59. 59.
    N. Johnson, O. Herrwerth, A. Wirth, S. De, I. Ben-Itzhak, M. Lezius, B. Bergues, M. Kling, A. Senftleben, C. Schröter, R. Moshammer, J. Ullrich, K. Betsch, R. Jones, A. Sayler, T. Rathje, K. Rühle, W. Müller, G. Paulus, Phys. Rev. A 83(1), 013412 (2011)Google Scholar
  60. 60.
    T. Wittmann, B. Horvath, W. Helml, M. Schätzel, X. Gu, A. Cavalieri, G. Paulus, R. Kienberger, Nat. Phys. 5(5), 357 (2009)CrossRefGoogle Scholar
  61. 61.
    A.M. Sayler, T. Rathje, W. Müller, C. Kürbis, K. Rühle, G. Stibenz, G.G. Paulus, Opt. Express 19(5), 4464 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    A.M. Sayler, T. Rathje, W. Müller, K. Rühle, R. Kienberger, G.G. Paulus, Opt. Lett. 36(1), 1 (2011)Google Scholar
  63. 63.
    M. Lewenstein, K. Kulander, K. Schafer, P. Bucksbaum, Phys. Rev. A 51(2), 1495 (1995)ADSCrossRefGoogle Scholar
  64. 64.
    S. Chelkowski, A. Bandrauk, A. Apolonski, Phys. Rev. A 70(1), 013815 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    S. Chelkowski, A. Bandrauk, Phys. Rev. A 71(5), 053815 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    H. Hasegawa, A. Hishikawa, K. Yamanouchi, Chem. Phys. Lett. 349(1–2), 57 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    H. Xu, T. Okino, K. Nakai, K. Yamanouchi, S. Roither, X. Xie, D. Kartashov, M. Schöffler, A. Baltuska, M. Kitzler, Chem. Phys. Lett. 484(4–6), 119 (2010)Google Scholar
  68. 68.
    C. Cornaggia, P. Hering, Phys. Rev. A 62(2), 023403 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    G.G. Paulus, W. Becker, W. Nicklich, H. Walther, J. Phys. B: At. Mol. Opt. Phys. 27(21), L703 (1994)ADSCrossRefGoogle Scholar
  70. 70.
    R. Kopold, W. Becker, H. Rottke, W. Sandner, Phys. Rev. Lett. 85(18), 3781 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. Schröter, J. Deipenwisch, J. Crespo, Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, W. Sandner, Phys. Rev. Lett. 87(4), 043003 (2001)Google Scholar
  72. 72.
    G. Yudin, M. Ivanov, Phys. Rev. A 64(1), 013409 (2001)ADSCrossRefGoogle Scholar
  73. 73.
    F. Rosca-Pruna, M. Vrakking, Phys. Rev. Lett. 87(15), 153902 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75(2), 543 (2003)ADSCrossRefGoogle Scholar
  75. 75.
    T. Seideman, E. Hamilton, Adv. At. Mol. Opt. Phys. 52, 289 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    A. Alnaser, X. Tong, T. Osipov, S. Voss, C. Maharjan, B. Shan, Z. Chang, C. Cocke, Phys. Rev. A 70(2), 23413 (2004)ADSCrossRefGoogle Scholar
  77. 77.
    X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik, A. Rubio, M.A.L. Marques, J. Phys. Condens. Matter: Inst. Phys. J. 24(23), 233202 (2012)Google Scholar
  78. 78.
    A. Castro, H. Appel, M. Oliveira, C.a. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Status Solidi B 243(11), 2465 (2006)Google Scholar
  79. 79.
    M. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comput. Phys. Commun. 151(1), 60 (2003)ADSCrossRefGoogle Scholar
  80. 80.
    B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74(23), 4623 (1995)ADSCrossRefGoogle Scholar
  81. 81.
    R. Thissen, J. Delwiche, J.M. Robbe, D. Duflot, J.P. Flament, J.H.D. Eland, J. Chem. Phys. 99(9), 6590 (1993)ADSCrossRefGoogle Scholar
  82. 82.
    T. Osipov, T.N. Rescigno, T. Weber, S. Miyabe, T. Jahnke, A.S. Alnaser, M.P. Hertlein, O. Jagutzki, L.P.H. Schmidt, M. Schöffler, L. Foucar, S. Schössler, T. Havermeier, M. Odenweller, S. Voss, B. Feinberg, A.L. Landers, M.H. Prior, R. Dörner, C.L. Cocke, A. Belkacem, J. Phys. B: At. Mol. Opt. Phys. 41(9), 091001 (2008)Google Scholar
  83. 83.
    S. Bubin, M. Atkinson, K. Varga, X. Xie, S. Roither, D. Kartashov, A. Baltuška, M. Kitzler, Phys. Rev. A 86(4), 043407 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    E. Lötstedt, T. Kato, K. Yamanouchi, Phys. Rev. A 85(4), 041402 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    E. Lötstedt, T. Kato, K. Yamanouchi, Phys. Rev. A 86(2), 023401 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    F. Légaré, I. Litvinyuk, P. Dooley, F. Quéré, A. Bandrauk, D. Villeneuve, P. Corkum, Phys. Rev. Lett. 91(9), 093002 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Photonics InstituteVienna University of TechnologyViennaAustria

Personalised recommendations