Electron and Ion Coincidence Momentum Imaging of Multichannel Dissociative Ionization of Ethanol in Intense Laser Fields

  • Ryuji Itakura
  • Kouichi Hosaka
  • Atsushi Yokoyama
  • Tomoya Ikuta
  • Fumihiko Kannari
  • Kaoru Yamanouchi
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 109)

Abstract

We investigate the multichannel dissociative ionization of \({\text {C}}_{2}{\text {H}}_{5}\)OH in intense laser fields by the photoelectron-photoion coincidence momentum imaging and identify separately the ionization and subsequent electronic excitation in \({\text {C}}_{2}{\text {H}}_{5}\)OH. From the energy correlation between a photoelectron and a fragment ion, we reveal the amount of the internal energy gained by \({\text {C}}_{2}{\text {H}}_{5}{\text {OH}}^{+}\) from the laser field varies depending on the respective ionization and electronic excitation pathways. It is found that \({\text {C}}_{2}{\text {H}}_{5}{\text {OH}}^{+}\) prepared in the electronic ground state associated with the moment of the photoelectron emission gains larger internal energy at the end of the laser pulse than that prepared in the electronically excited state at the moment of the photoelectron emission.

References

  1. 1.
    L.J. Frasinski et al., Femtosecond dynamics of multielectron dissociative ionization by use of picosecond laser. Phys. Rev. Lett. 58, 2424 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    C. Cornaggia et al., Multielectron dissociative ionization of diatomic molecules in an intense femtosecond laser field. Phys. Rev. A 44, 4499 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Chin, Multiphoton ionization of molecules. Phys. Rev. A 4, 992 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    A. Talebpour, A.D. Bandrauk, J. Yang, S.L. Chin, Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse. Chem. Phys. Lett. 313, 789 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M. Lezius, V. Blanchet, M.Y. Ivanov, A. Stolow, Polyatomic molecules in strong laser fields: nonadiabatic multielectron dynamics. J. Chem. Phys. 117, 1575 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Markevitch et al., Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields. Phys. Rev. A 69, 013401 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kono et al., Quantum mechanical study of electronic and nuclear dynamics of molecules in intense laser fields. Chem. Phys. 304, 203 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kono et al., Theoretical investigations of the electronic and nuclear dynamics of molecules in intense laser fields: quantum mechanical wave packet approaches. Bull. Chem. Soc. Jpn. 79, 196 (2006)CrossRefGoogle Scholar
  9. 9.
    L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Zh. Eksp. Teor. Fiz. 47, 1945 (1964). [Soviet Physics JETP 20, 1307–1314 (1965)]Google Scholar
  10. 10.
    F.H.M. Faisal, Multiphoton ionization of hydrogenic atoms and the breakdown of perturbative calculations at high intensities. J. Phys. B 6, 584 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    H.R. Reiss, Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 22, 1786 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    A. Becker, F.H.M. Faisal, Intense-field many-body S -matrix theory. J. Phys. B 38, R1 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    E. Mevel et al., Atoms in strong optical fields: evolution from multiphoton to tunnel ionization. Phys. Rev. Lett. 70, 406 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M.J. DeWitt, R.J. Levis, Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields. Phys. Rev. Lett. 81, 5101 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    B.K. McFarland, J.P. Farrell, P.H. Bucksbaum, M. Guhr, High harmonic generation from multiple orbitals in \({\text{ N }}_{2}\). Science 322, 1232 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    O. Smirnova et al., High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S. Haessler et al., Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Fang, G.N. Gibson, Investigating excited electronic states of \({\text{ I }}_{0}^{+}\) and \({\text{ I }}_{2}^{2+}\) produced by strong-field ionization using vibrational wave packets. Phys. Rev. A 75, 063410 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    D. Geissler et al., Creation of multihole molecular wave packets via strong-field ionization. Phys. Rev. A 82, 011402(R) (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Kotur et al., Neutral-ionic state correlations in strong-field molecular ionization. Phys. Rev. Lett. 109, 203007 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Mikosch et al., Channel- and angle-resolved above threshold ionization in the molecular frame. Phys. Rev. Lett. 110, 023004 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Spanner, S. Patchkovskii, One-electron ionization of multielectron systems in strong nonresonant laser fields. Phys. Rev. A 80, 063411 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A.E. Boguslavskiy et al., The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J.H.D. Eland, Angular distributions, energy disposal, and branching studied by photoelectron-photoion coincidence spectroscopy: \({\text{ O }}_{2}^{+}\), NO\(^{+}\), ICl\(^{+}\), IBr\(^{+}\), and \({\text{ I }}_{2}^{+}\) fragmentation. J. Chem. Phys. 70, 2926 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    E. Shigemasa, J. Adachi, M. Oura, A. Yagishita, Angular distributions of 1s\(\sigma \) photoelectrons from fixed-in-space \({\text{ N }}_{2}\) molecules. Phys. Rev. Lett. 74, 359 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    K. Hosaka et al., Coincidence velocity imaging apparatus for study of angular correlations between photoelectrons and photofragments. Jpn. J. Appl. Phys. 45, 1841 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    T. Osipov et al., Photoelectron-photoion momentum spectroscopy as a clock for chemical rearrangements: isomerization of the Di-Cation of Acetylene to the Vinylidene configuration. Phys. Rev. Lett. 90, 233002 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Davies, J.E. LeClaire, R.E. Continetti, C.C. Hayden, Femtosecond time-resolved photoelectron-photoion coincidence imaging studies of dissociation dynamics. J. Chem. Phys. 111, 1 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    J.A. Davies, R.E. Continetti, D.W. Chandler, C.C. Hayden, Femtosecond time-resolved photoelectron angular distributions probed during photodissociation of \({\text{ NO }}_{2}\). Phys. Rev. Lett. 84, 5983 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    H. Rottke et al., Coincident fragment detection in strong field photoionization and dissociation of \({\text{ H }}_{2}\). Phys. Rev. Lett. 89, 013001 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    T. Hatamoto et al., High-resolution electron-ion coincidence spectroscopy of ethanol in intense laser fields. Phys. Rev. A 75, 061402(R) (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A. Matsuda, M. Fushitani, A. Hishikawa, Electron-ion coincidence momentum imaging of molecular dissociative ionization in intense laser fields: application to \({\text{ CS }}_{2}\). J. Electron Spectrosc. Relat. Phenom. 169, 97 (2009)CrossRefGoogle Scholar
  33. 33.
    K. Hosaka et al., Photoelectron-photoion coincidence momentum imaging for dissociative ionization of ethanol in intense laser fields. Chem. Phys. Lett. 475, 19 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    H. Akagi et al., Laser tunnel ionization from multiple orbitals in HCl. Science 325, 1364 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    T. Ikuta et al., Separation of ionization and subsequent electronic excitation for formation of electronically excited ethanol cation in intense laser fields. J. Phys. B 44, 191002 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    K. Hosaka, A. Yokoyama, K. Yamanouchi, R. Itakura, Correlation between a photoelectron and a fragment ion in dissociative ionization of ethanol in intense near-infrared laser fields. J. Chem. Phys. 138, 204301 (2013)Google Scholar
  37. 37.
    M. Lebech, J.C. Houver, D. Dowek, Ion-electron velocity vector correlations in dissociative photoionization of simple molecules using electrostatic lenses. Rev. Sci. Instrum. 73, 1866 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    R. Trebino et al., Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    S. Katsumata, T. Iwai, K. Kimura, Photoelectron spectra and sum rule consideration. Higher alkyl amines and alchools. Bull. Chem. Soc. Jpn. 46, 3391 (1973)CrossRefGoogle Scholar
  40. 40.
    Y. Niwa, T. Nishimura, T. Tsuchiya, Ionic dissociation of ethanol studied by photoelectron-photoion coincidence spectroscopy. Int. J. Mass Spectrom. Ion Phys. 42, 91 (1982)CrossRefGoogle Scholar
  41. 41.
    K. Kimura et al., Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Societies Press, Tokyo, 1981)Google Scholar
  42. 42.
    H. Niikura et al., Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    X. Xie et al., Attosecond-recollision-controlled selective fragmentation of polyatomic molecules. Phys. Rev. Lett. 109, 243001 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    I.V. Litvinyuk et al., Shakeup excitation during Optical Tunnel Ionization. Phys. Rev. Lett. 94, 033003 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    R.R. Freeman et al., Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  46. 46.
    M.B. Robin, Higher Excited States of Polyatomic Molecules, vol. 1 (Academic Press, New York, 1974)Google Scholar
  47. 47.
    A.M. Muller et al., Photoionization and photofragmentation of gaseous toluene using 80 fs, 800 nm laser pulses. J. Chem. Phys. 112, 9289 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M.V. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Zh. Eksp. Teor. Fiz. 91, 2008 (1986). [Sov. Phys. JETP 64, 1191–1194 (1986)]Google Scholar
  49. 49.
    H.-F. Lu et al., Fragmentations of singly charged ethanol cation: an ab initio/RRKM study. J. Mol. Struct. Theochem. 761, 159 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ryuji Itakura
    • 1
  • Kouichi Hosaka
    • 1
  • Atsushi Yokoyama
    • 1
  • Tomoya Ikuta
    • 1
    • 2
  • Fumihiko Kannari
    • 2
  • Kaoru Yamanouchi
    • 3
  1. 1.Quantum Beam Science Directorate, Kansai Photon Science InstituteJapan Atomic Energy AgencyKyotoJapan
  2. 2.Department of Electronics and Electrical EngineeringKeio UniversityKouhoku-kuJapan
  3. 3.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations