Advertisement

A Fast Branching Algorithm for Cluster Vertex Deletion

  • Anudhyan Boral
  • Marek Cygan
  • Tomasz Kociumaka
  • Marcin Pilipczuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8476)

Abstract

In the family of clustering problems we are given a set of objects (vertices of the graph), together with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques).

Hüffner et al. [LATIN 2008, Theory Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant \(\mathcal{O}(2^k k^9 + nm)\)-time fixed-parameter algorithm, parameterized by the solution size. In the last 5 years, this algorithm remained the fastest known algorithm for Cluster Vertex Deletion and, thanks to its simplicity, became one of the textbook examples of an application of the iterative compression principle. In our work we break the 2 k -barrier for Cluster Vertex Deletion and present an \(\mathcal{O}(1.9102^k (n+m))\)-time branching algorithm.

Keywords

Vertex Cover Minimum Solution Cluster Graph Auxiliary Graph Minimum Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. Journal of Computer and System Sciences 76(7), 524–531 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. Journal of the ACM 55(5), 23:1–23:27 (2008)Google Scholar
  4. 4.
    Alon, N., Makarychev, K., Makarychev, Y., Naor, A.: Quadratic forms on graphs. In: Proceedings of STOC 2005, pp. 486–493. ACM (2005)Google Scholar
  5. 5.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3/4), 281–297 (1999)CrossRefGoogle Scholar
  7. 7.
    Böcker, S.: A golden ratio parameterized algorithm for cluster editing. Journal of Discrete Algorithms 16, 79–89 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science 410(52), 5467–5480 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Information Processing Letters 111(14), 717–721 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.A.: Clustering with partial information. Theoretical Computer Science 411(7-9), 1202–1211 (2010)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: Fast branching algorithm for cluster vertex deletion. CoRR, abs/1306.3877 (2013)Google Scholar
  13. 13.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending Grothendieck’s inequality. In: Proceedings of FOCS 2004, pp. 54–60. IEEE Computer Society (2004)Google Scholar
  15. 15.
    Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory of Computing Systems 46(2), 261–283 (2010)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optimization 8(1), 2–17 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-hitting set. Algorithmica 57(1), 97–118 (2010)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in theoretical computer science. Springer, Heidelberg (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing. In: Proceedings of STACS 2013. LIPIcs, vol. 20, pp. 32–43. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  20. 20.
    Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing 2(1), 249–266 (2006)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. Algorithmica 61(4), 949–970 (2011)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal of Discrete Mathematics 24(4), 1662–1683 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217 (2010)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Komusiewicz, C.: Parameterized Algorithmics for Network Analysis: Clustering & Querying. PhD thesis, Technische Universität Berlin (2011), http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf
  28. 28.
    Komusiewicz, C., Uhlmann, J.: Alternative parameterizations for cluster editing. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 344–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory of Computing Systems 44(1), 91–104 (2009)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anudhyan Boral
    • 1
  • Marek Cygan
    • 2
  • Tomasz Kociumaka
    • 2
  • Marcin Pilipczuk
    • 3
  1. 1.Chennai Mathematical InstituteChennaiIndia
  2. 2.Institute of InformaticsUniversity of WarsawPoland
  3. 3.Department of InformaticsUniversity of BergenNorway

Personalised recommendations