Asian Options, Jump-Diffusion Processes on a Lattice, and Vandermonde Matrices

  • Karl LundengårdEmail author
  • Carolyne Ogutu
  • Sergei Silvestrov
  • Patrick Weke
Part of the EAA Series book series (EAAS)


Asian options are options whose value depends on the average asset price during its lifetime. They are useful because they are less subject to price manipulations. We consider Asian option pricing on a lattice where the underlying asset follows the Merton–Bates jump-diffusion model. We describe the construction of the lattice using the moment matching technique which results in an equation system described by a Vandermonde matrix. Using some properties of Vandermonde matrices we calculate the jump probabilities of the resulting system. Some conditions on the possible jump sizes in the lattice are also given.


Asset Price Option Price Underlying Asset Asian Option Vandermonde Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by The Royal Physiographic Society in Lund, The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), The Swedish Research Council, The Royal Swedish Academy of Sciences, The Crafoord Foundation, as well as by The International Science Program, SIDA foundation and by Mälardalen University. Carolyne Ogutu is grateful to the research environment in Mathematics and Applied Mathematics at the Division of Applied Mathematics of the School of Education, Culture and Communication (UKK) at Mälardalen University for their hospitality and creating excellent conditions for research, research education and cooperation. She is also grateful for the support of the International Science Program, Uppsala University, Sweden, through collaboration with The Eastern African Universities Mathematics Programme. The authors would also like to thank the organisers of ICSIM and the referee whose report greatly improved the quality of the chapter.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964). (ninth Dover printing, tenth GPO printing edition)zbMATHGoogle Scholar
  2. 2.
    Amin, K.L.: Jump diffusion option valuation in discrete time. J. Financ. 48(5), 1833–1863 (1993)CrossRefGoogle Scholar
  3. 3.
    Barraquand, J., Pudet, T.: Pricing of American path-dependent contingent claims. Math. Financ. 6(1), 17–51 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bates, D.S.: The crash of ’87: Was it expected? The evidence from options markets. J. Financ. 46(3), 1009–1044 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 54–637 (1973)CrossRefGoogle Scholar
  6. 6.
    Bouaziz, L., Briys, E., Crouhy, M.: Pricing of forward-starting Asian options. J. Bank. Finance 18(5), 823–839 (1994)CrossRefGoogle Scholar
  7. 7.
    Boyle, P.P.: A lattice framework for option pricing with two state variables. J. Financ. Quant. Anal. 23(1), 1–12 (1988)CrossRefGoogle Scholar
  8. 8.
    Chalasani, P., Jha, S., Saias, I.: Approximate option pricing. Algorithmica 25(1), 2–21 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Financial Mathematics Series. CRC Press, Boca Raton (2004)Google Scholar
  10. 10.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing. A simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dai, T.-S., Huang, G.-S., Lyuu, Y.-D.: An efficient convergent lattice algorithm for European Asian options. Appl. Math. Comput. 169(2), 1458–1471 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dai, T.-S., Lyuu, Y.-D.: An efficient, exact algorithm for Asian options with multiresolution lattices. Rev. Deriv. Res. 5, 181–203 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dai, T.-S., Lyuu, Y.-D.: An exact subexponential time lattice algorithm for Asian options. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms (SODA ’04). SIAM, Philadelphia, PA, USA, pp. 710–717 (2004)Google Scholar
  14. 14.
    Dai, T.-S., Wang, C.-J., Lyuu, Y.-D., Liu, Y.-C.: An efficient and accurate lattice for pricing derivatives under jump-diffusion process. Appl. Math. Comput. 217, 3174–3189 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Duan, J.-C.: The GARCH option pricing model. Math. Financ. 5, 13–32 (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Forsyth, P.A., Verzal, K.R., Zvan, R.: Convergence of numerical methods for valuing path-dependent options using interpolation. Rev. Deriv. Res. 5, 273–314 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Fusai, G., Meucci. A.: Pricing discretely monitored Asian options under Lévy processes. J. Bank. Financ. 32, 2076–2088 (2008)Google Scholar
  18. 18.
    Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)CrossRefGoogle Scholar
  19. 19.
    Hilliard, J.E., Schwartz, A.: Pricing European and American derivatives under a jump-diffusion process: a bivariate tree approach. J. Financ. Quant. Anal. 40(3), 671–691 (2005)CrossRefGoogle Scholar
  20. 20.
    Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Financ. 42(2), 281–300 (1987)CrossRefGoogle Scholar
  21. 21.
    Hull, J., White, A.: Efficient procedures for valuing European and American path-dependent options. J. Deriv. 1(1), 21–31 (1993)CrossRefGoogle Scholar
  22. 22.
    Jang, J.: Jump diffusion processes and their applications in insurance and finance. Insur.: Math. Econ. 41(1), 62–70 (2007)zbMATHGoogle Scholar
  23. 23.
    Lo, K.-H., Wang, K., Hsu, M.-F.: Pricing American Asian options with higher moments in the underlying distribution. J. Comput. Appl. Math. 223(1), 304–313 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lyuu, Y.: Financial Engineering and Computation: Principles, Mathematics and Algorithms. Cambrige University Press, Cambrige (2002)Google Scholar
  25. 25.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford University Press, The Clarendon Press, Oxford (1979)Google Scholar
  26. 26.
    Macon, N., Spitzbart, A.: Inverses of Vandermonde matrices. Am. Math. Monthly 65(2), 95–100 (1958)Google Scholar
  27. 27.
    Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4(1), 141–183 (1973). (The RAND Corporation)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)CrossRefzbMATHGoogle Scholar
  29. 29.
    Motwani, R., Aingworth, D., Oldham, J.D.: Accurate approximations for Asian options. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’00). SIAM, Philadelphia, PA, USA, pp. 891–900 (2000)Google Scholar
  30. 30.
    Primbs, J.A., Rathinam, M., Yamada, Y.: Option pricing with a pentanomial lattice model that incorporates skewness and kurtosis. Appl. Math. Financ. 14(1), 1–17 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32, 1077–1082 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Silvestrov, D.S.: American-Type Options. Stochastic Approximation Methods, vol. I. De Gruyter Studies in Mathematics 56. De Gruyter, Berlin (2013)Google Scholar
  33. 33.
    Vecer, J.: Unified Asian pricing. Risk 2, 113–116 (2002)Google Scholar
  34. 34.
    Yamada, Y., Primbs, J.A.: Properties of Multinomial lattices with cumulants for option pricing and hedging. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Karl Lundengård
    • 1
    Email author
  • Carolyne Ogutu
    • 2
  • Sergei Silvestrov
    • 1
  • Patrick Weke
    • 2
  1. 1.Mälardalen UniversityVasterasSweden
  2. 2.University of NairobiNairobiKenya

Personalised recommendations