Performance Evaluation of an Ethernet-Based Cabin Network Architecture Supporting a Low-Latency Service

  • Fabien Geyer
  • Stefan Schneele
  • Wolfgang Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8435)


Aircraft cabin data network is a key element in today’s aircraft, where several functionalities of the cabin are grouped in four different security domains. In todays architectures, each domain is normally separated from the others and uses different standards, ranging from ARINC based standards to customized Ethernet. We present here a future of cabin data network, where the main key principle is the use of a common Gigabit full-duplex Ethernet backbone, shared by all domains. As this new network has to be compliant with existing applications and their requirements, a specific Quality-of-Service (QoS) architecture is investigated in this paper. The contributions of this paper are the description of a new network architecture for cabin networks, and the introduction of a scheduling algorithm called Time-Aware Deficit Round Robin (TADRR) enabling an ultra low-latency time-triggered service. We show the benefits of this new architecture via a performance evaluation carried out with the simulator OMNeT++.


Cabin Data Network Low-Latency Service Scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE 802.1 Audio/Video Bridging Task Group, (accessed February 25, 2014)
  2. 2.
    IEEE 802.1Qbu Task Group - Frame Preemption, (accessed February 25, 2014)
  3. 3.
    IEEE 802.1Qbv Task Group - Enhancements for Scheduled Traffic, (accessed February 25, 2014)
  4. 4.
    IEEE Time-Sensitive Networking Task Group, (accessed February 25, 2014)
  5. 5.
    INET Framework for OMNeT++/OMNEST, (accessed June 25, 2013)
  6. 6.
    OMNeT++ 4.3 Network Simulation Framework, (accessed June 03, 2013)
  7. 7.
    Aeronautical Radio Inc.: ARINC Specification 664P5: Aircraft Data Network, Part 5 - Network Domain Characteristics and Interconnection (April 2005)Google Scholar
  8. 8.
    Aeronautical Radio Inc.: ARINC Specification 664P7: Aircraft Data Network, Part 7 - Avionics Full Duplex Switched Ethernet (AFDX) Network (June 2005)Google Scholar
  9. 9.
    Aeronautical Radio Inc.: ARINC Specification 664P7-1: Aircraft Data Network, Part 7 - Avionics Full Duplex Switched Ethernet (AFDX) Network (September 2009)Google Scholar
  10. 10.
    Bencivenni, M., Bortolotti, D., Carbone, A., Cavalli, A., Chierici, A., Dal Pra, S., De Girolamo, D., Dell’Agnello, L., Donatelli, M., Fella, A., Galli, D., Ghiselli, A., Gregori, D., Italiano, A., Kumar, R., Marconi, U., Martelli, B., Mazzucato, M., Onofri, M., Peco, G., Perazzini, S., Prosperini, A., Ricci, P., Ronchieri, E., Rosso, F., Salomoni, D., Sapunenko, V., Vagnoni, V., Veraldi, R., Vistoli, M., Zani, S.: Performance of 10 Gigabit Ethernet Using Commodity Hardware. IEEE Transactions on Nuclear Science 57(2), 630–641 (2010)CrossRefGoogle Scholar
  11. 11.
    Carvajal, G., Wu, C., Fischmeister, S.: Evaluation of Communication Architectures for Switched Real-time Ethernet. IEEE Transactions on Computers 63(1), 218–229 (2014)CrossRefGoogle Scholar
  12. 12.
    Felser, M.: Real-Time Ethernet - Industry Prospective. Proceedings of the IEEE 93(6), 1118–1129 (2005)CrossRefGoogle Scholar
  13. 13.
    Feng, W., Balaji, P., Baron, C., Bhuyan, L., Panda, D.: Performance Characterization of a 10-Gigabit Ethernet TOE. In: Proceedings of the 13th IEEE Symposium on High Performance Interconnects (Hot Interconnects), pp. 58–63 (August 2005)Google Scholar
  14. 14.
    Fischer, W., Klose, P., Heinisch, M., Reuter, J.: Challenges of Future Cabin Networks. In: Proceedings of Workshop on Aircraft System Technologies, AST (April 2013)Google Scholar
  15. 15.
    Geyer, F., Schneele, S., Heinisch, M., Klose, P.: Simulation and Performance Evaluation of an Aircraft Cabin Network Node. In: Proceedings of Workshop on Aircraft System Technologies, AST (April 2013)Google Scholar
  16. 16.
    Jacobs, A., Wernicke, J., Oral, S., Gordon, B., George, A.: Experimental Characterization of QoS in Commercial Ethernet Switches for Statistically Bounded Latency in Aircraft Networks. In: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN 2004), pp. 190–197 (November 2004)Google Scholar
  17. 17.
    Meier, J., Kim, S., George, A., Oral, S.: Gigabit COTS Ethernet Switch Evaluation for Avionics. In: Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN 2002), pp. 739–740 (November 2002)Google Scholar
  18. 18.
    Sauter, T.: The Three Generations of Field-Level Networks - Evolution and Compatibility Issues. IEEE Transactions on Industrial Electronics 57(11), 3585–3595 (2010)CrossRefGoogle Scholar
  19. 19.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for Real-Time Applications. RFC 3550 (INTERNET STANDARD), updated by RFCs 5506, 5761, 6051, 6222, 7022 (July 2003)Google Scholar
  20. 20.
    Shreedhar, M., Varghese, G.: Efficient Fair Queuing Using Deficit Round-Robin. IEEE/ACM Transactions on Networking 4(3), 375–385 (1996)CrossRefGoogle Scholar
  21. 21.
    Sommer, J., Gunreben, S., Feller, F., Kohn, M., Mifdaoui, A., Sass, D., Scharf, J.: Ethernet - A Survey on its Fields of Application. IEEE Communications Surveys and Tutorials (2), 263–284 (2010)Google Scholar
  22. 22.
    Spitzer, C.R. (ed.): Digital Avionics Handbook. Avionics: Development and Implementation. The Electrical Engineering Handbook Series. CRC Press (December 2006)Google Scholar
  23. 23.
    Suen, J., Kegley, R., Preston, J.: Affordable Avionic Networks with Gigabit Ethernet: Assessing the Suitability of Commercial Components for Airborne Use. In: Proceedings of IEEE Southeastcon 2013, pp. 1–6 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fabien Geyer
    • 1
    • 2
  • Stefan Schneele
    • 1
  • Wolfgang Fischer
    • 3
  1. 1.Department TX4CPAirbus Group InnovationsMünchenGermany
  2. 2.Institut für Informatik I-8Technische Universität MünchenGarching b. MünchenGermany
  3. 3.Department Cabin Electronic Pre-DevelopmentAirbus Operations GmbHBuxtehudeGermany

Personalised recommendations