Privacy-Preserving Collaborative Anomaly Detection for Participatory Sensing

  • Sarah M. Erfani
  • Yee Wei Law
  • Shanika Karunasekera
  • Christopher A. Leckie
  • Marimuthu Palaniswami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8443)

Abstract

In collaborative anomaly detection, multiple data sources submit their data to an on-line service, in order to detect anomalies with respect to the wider population. A major challenge is how to achieve reasonable detection accuracy without disclosing the actual values of the participants’ data. We propose a lightweight and scalable privacy-preserving collaborative anomaly detection scheme called Random Multiparty Perturbation (RMP), which uses a combination of nonlinear and participant-specific linear perturbation. Each participant uses an individually perturbed uniformly distributed random matrix, in contrast to existing approaches that use a common random matrix. A privacy analysis is given for Bayesian Estimation and Independent Component Analysis attacks. Experimental results on real and synthetic datasets using an auto-encoder show that RMP yields comparable results to non-privacy preserving anomaly detection.

Keywords

Privacy-preserving data mining Anomaly detection Collaborative learning Participatory sensing Horizontally partitioned data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dung, L.T., Bao, H.T.: A Distributed Solution for Privacy Preserving Outlier Detection. In: Third International Conference on KSE, pp. 26–31 (2011)Google Scholar
  2. 2.
    Vaidya, J., Clifton, C.: Privacy-preserving outlier detection. In: IEEE ICDM, pp. 233–240 (2004)Google Scholar
  3. 3.
    Bhaduri, K., Stefanski, M.D., Srivastava, A.N.: Privacy-preserving outlier detection through random nonlinear data distortion. IEEE TSMC, Part B 41, 260–272 (2011)Google Scholar
  4. 4.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: ACM SenSys 1st Workshop on World-Sensor-Web: Mobile Device Centric Sensor Networks and Applications (2006)Google Scholar
  5. 5.
    Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE TKDE 18(1), 92–106 (2006)Google Scholar
  6. 6.
    Chen, K., Liu, L.: Privacy-preserving multiparty collaborative mining with geometric data perturbation. IEEE TPDS 20(12), 1764–1776 (2009)Google Scholar
  7. 7.
    Mangasarian, O.L., Wild, E.W.: Privacy-preserving classification of horizontally partitioned data via random kernels. In: Proceedings of DMIN (2007)Google Scholar
  8. 8.
    Bansal, A., Chen, T., Zhong, S.: Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data. Neural Computing and Applications 20, 143–150 (2010)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Zhong, S.: A privacy-preserving algorithm for distributed training of neural network ensembles. Neural Computing and Applications 22, 269–282 (2012)CrossRefGoogle Scholar
  10. 10.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Record 29(2), 439–450 (2000)CrossRefGoogle Scholar
  11. 11.
    Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of ACM PODS, pp. 247–255 (2001)Google Scholar
  12. 12.
    Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation technique. In: IEEE ICDM, pp. 99–106 (2003)Google Scholar
  13. 13.
    Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Proceedings of ACM SIGMOD, pp. 37–48 (2005)Google Scholar
  14. 14.
    Papadimitriou, S., Li, F., Kollios, G., Yu, P.S.: Time series compressibility and privacy. In: Proceedings of VLDB, pp. 459–470 (2007)Google Scholar
  15. 15.
    Ganti, R.K., Pham, N., Tsai, Y.E., Abdelzaher, T.F.: Poolview: stream privacy for grassroots participatory sensing. In: Proceedings of ACM SenSys, pp. 281–294 (2008)Google Scholar
  16. 16.
    Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-preserving data perturbation methods. In: Privacy-Preserving Data Mining. Springer (2008)Google Scholar
  17. 17.
    Sang, Y., Shen, H., Tian, H.: Effective reconstruction of data perturbed by random projections. IEEE Transactions on Computers 61(1), 101–117 (2012)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Liu, B., Jiang, Y., Sha, F., Govindan, R.: Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In: Proceedings of SenSys, pp. 57–70 (2012)Google Scholar
  19. 19.
    Giannella, C.R., Liu, K., Kargupta, H.: Breaching euclidean distance-preserving data perturbation using few known inputs. Data & Knowledge Engineering (2012)Google Scholar
  20. 20.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefGoogle Scholar
  21. 21.
    Liu, K., Giannella, C., Kargupta, H.: An attacker’s view of distance preserving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Guo, S., Wu, X.: Deriving private information from arbitrarily projected data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Dykstra, R.L.: Establishing the positive definiteness of the sample covariance matrix. The Annals of Mathematical Statistics 41(6), 2153–2154 (1970)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sarah M. Erfani
    • 1
  • Yee Wei Law
    • 2
  • Shanika Karunasekera
    • 1
  • Christopher A. Leckie
    • 1
  • Marimuthu Palaniswami
    • 2
  1. 1.Department of Computing and Information SystemsNICTA Victoria Research LaboratoryAustralia
  2. 2.Department of Electrical and Electronic EngineeringThe University of MelbourneAustralia

Personalised recommendations