Fast Triangle Core Decomposition for Mining Large Graphs

  • Ryan A. Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8443)

Abstract

Large triangle cores represent dense subgraphs for which each edge has at least k − 2 triangles (same as cliques). This paper presents a fast algorithm for computing the triangle core decomposition on big graphs. The proposed triangle core algorithm adapts both the computations and representation based on the properties of the graph. In addition, we develop a fast edge-based parallel triangle counting algorithm, which lies at the heart of the triangle core decomposition. The proposed algorithm is orders of magnitude faster than the currently available approach. We also investigate and propose fast methods for two variants of the triangle core problem: computing only the top-k triangle cores fast and finding the maximum triangle core number of the graph. The experiments demonstrate the scalability and effectiveness of our approach on 150+ networks with up to 1.8 billion-edges. Further, we apply the proposed methods for graph mining tasks including finding dense subgraphs, temporal strong components, and maximum cliques.

Keywords

Triangle-core decomposition parallel triangle counting maximum clique temporal strong components triangle-core ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS (2005)Google Scholar
  2. 2.
    Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)Google Scholar
  3. 3.
    Cohen, J.D.: Graph twiddling in a mapreduce world. Computing in Science & Engineering 11(4), 29–41 (2009)CrossRefGoogle Scholar
  4. 4.
    Cohen, J.D.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report (2008)Google Scholar
  5. 5.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91(2), 201–213 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: K-core organization of complex networks. Physical Review Letters 96(4), 040601 (2006)Google Scholar
  7. 7.
    Kang, U., Meeder, B., Faloutsos, C.: Spectral analysis for billion-scale graphs: Discoveries and implementation. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 13–25. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment 5(8), 716–727 (2012)Google Scholar
  9. 9.
    Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. Chaos 22(2) (2012)Google Scholar
  10. 10.
    Ahmed, N.K., Neville, J., Kompella, R.: Network sampling: From static to streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 1–54 (2013)Google Scholar
  11. 11.
    Prosser, P.: Exact algorithms for maximum clique: A computational study. arXiv:1207.4616v1 (2012)Google Scholar
  12. 12.
    Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.A.: Fast maximum clique algorithms for large graphs. In: WWW Companion (2014)Google Scholar
  13. 13.
    Rossi, R.A., McDowell, L.K., Aha, D.W., Neville, J.: Transforming graph data for statistical relational learning. JAIR 45, 363–441 (2012)MATHGoogle Scholar
  14. 14.
    San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38, 571–581 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In: WWW, pp. 607–614. ACM (2011)Google Scholar
  16. 16.
    Wang, J., Cheng, J.: Truss decomposition in massive networks. Proceedings of the VLDB Endowment 5(9), 812–823 (2012)Google Scholar
  17. 17.
    Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: ICDE, pp. 1049–1060 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ryan A. Rossi
    • 1
  1. 1.Purdue UniversityUSA

Personalised recommendations