Advertisement

Detecting Changes in Rare Patterns from Data Streams

  • David Tse Jung Huang
  • Yun Sing Koh
  • Gillian Dobbie
  • Russel Pears
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8444)

Abstract

Current drift detection techniques in data streams focus on finding changes in streams with labeled data intended for supervised machine learning methods. Up to now there has been no research that considers drift detection on item based data streams with unlabeled data intended for unsupervised association rule mining. In this paper we address and discuss the current issues in performing drift detection of rare patterns in data streams and present a working approach that enables the detection of rare pattern changes. We propose a novel measure, called the M measure, that facilitates pattern change detection and through our experiments we show that this measure can be used to detect changes in rare patterns in data streams efficiently and accurately.

Keywords

Data Stream Drift Detection Rare Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adda, M., Wu, L., Feng, Y.: Rare itemset mining. In: Proceedings of the Sixth International Conference on Machine Learning and Applications, ICMLA 2007, pp. 73–80. IEEE Computer Society, Washington, DC (2007)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, Santiago, Chile, pp. 487–499 (1994)Google Scholar
  3. 3.
    Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining (2007)Google Scholar
  4. 4.
    Bifet, A., Gavaldà, R.: Mining adaptively frequent closed unlabeled rooted trees in data streams. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 34–42. ACM, New York (2008), http://doi.acm.org.ezproxy.auckland.ac.nz/10.1145/1401890.1401900 Google Scholar
  5. 5.
    Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data streams at multiple time granularities. Next Generation Data Mining 212, 191–212 (2003)Google Scholar
  7. 7.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 1–12. ACM, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Ho, S.S., Wechsler, H.: A Martingale framework for detecting changes in data streams by testing exchangeability. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(12), 2113–2127 (2010)CrossRefGoogle Scholar
  9. 9.
    Huang, D., Koh, Y.S., Dobbie, G.: Rare pattern mining on data streams. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 303–314. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-32584-7_25 CrossRefGoogle Scholar
  10. 10.
    Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth International Conference on VLDB, vol. 30, pp. 180–191. VLDB Endowment (2004)Google Scholar
  11. 11.
    Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp. 487–494 (2000)Google Scholar
  12. 12.
    Koh, Y.S., Rountree, N.: Finding sporadic rules using apriori-inverse. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum supports. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 337–341 (1999)Google Scholar
  14. 14.
    Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954), http://www.jstor.org/stable/2333009 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sebastiao, R., Gama, J.: A study on change detection methods. In: 4th Portuguese Conf. on Artificial Intelligence, Lisbon (2009)Google Scholar
  16. 16.
    Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 01, pp. 305–312. IEEE Computer Society, Washington, DC (2007)Google Scholar
  17. 17.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Efficient frequent pattern mining over data streams. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, pp. 1447–1448. ACM, New York (2008)Google Scholar
  18. 18.
    Tsang, S., Koh, Y.S., Dobbie, G.: RP-Tree: Rare pattern tree mining. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 277–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Tse Jung Huang
    • 1
  • Yun Sing Koh
    • 1
  • Gillian Dobbie
    • 1
  • Russel Pears
    • 2
  1. 1.Department of Computer ScienceUniversity of AucklandNew Zealand
  2. 2.School of Computing and Mathematical SciencesAUT UniversityNew Zealand

Personalised recommendations