Shifting Hypergraphs by Probabilistic Voting

  • Yang Wang
  • Xuemin Lin
  • Qing Zhang
  • Lin Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8444)


In this paper, we develop a novel paradigm, namely hypergraph shift, to find robust graph modes by probabilistic voting strategy, which are semantically sound besides the self-cohesiveness requirement in forming graph modes. Unlike the existing techniques to seek graph modes by shifting vertices based on pair-wise edges (i.e, an edge with 2 ends), our paradigm is based on shifting high-order edges (hyperedges) to deliver graph modes. Specifically, we convert the problem of seeking graph modes as the problem of seeking maximizers of a novel objective function with the aim to generate good graph modes based on sifting edges in hypergraphs. As a result, the generated graph modes based on dense subhypergraphs may more accurately capture the object semantics besides the self-cohesiveness requirement. We also formally prove that our technique is always convergent. Extensive empirical studies on synthetic and real world data sets are conducted on clustering and graph matching. They demonstrate that our techniques significantly outperform the existing techniques.


Hypergraphs Mode Seeking Probabilistic Voting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bomze, I.M.: Branch-and-bound approahces to standard quadratic optimization problems. Journal of Global Optimization 22(1-4), 17–37 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bulo, S., Pellilo, M.: A game-theoretic approach to hypergraph clustering. In: NIPS (2009)Google Scholar
  3. 3.
    Cho, M., Lee, K.M.: Progressive graph matching: Making a move of graphs via probabilistic voting. In: CVPR (2012)Google Scholar
  4. 4.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. TPAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar
  5. 5.
    Ding, L., Yilmaz, A.: Interactive image segmentation using probabilistic hypergraphs. Pattern Recognition 43(5), 1863–1873 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Duchenme, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: CVPR (2009)Google Scholar
  7. 7.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results,
  8. 8.
    Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: CVPR (2010)Google Scholar
  9. 9.
    Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)Google Scholar
  10. 10.
    Leoradeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)Google Scholar
  11. 11.
    Leordeanu, M., Hebert, M., Sukthankar, R.: Integer projected fixed point for graph matching and map inference. In: NIPS (2009)Google Scholar
  12. 12.
    Leordeanu, M., Sminchisescu, C.: Efficient hypergraph clustering. In: AISTATS (2012)Google Scholar
  13. 13.
    Liu, H., Latecki, L., Yan, S.: Robust clustering as ensembles of affinity relations. In: NIPS (2010)Google Scholar
  14. 14.
    Liu, H., Yan, S.: Robust graph mode seeking by graph shift. In: ICML (2010)Google Scholar
  15. 15.
    Macrini, D., Siddiqi, K., Dickinson, S.: From skeletons to bone graphs: Medial abstrations for object recognition. In: CVPR (2008)Google Scholar
  16. 16.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. TPAMI 29(1), 167–171 (2007)CrossRefGoogle Scholar
  17. 17.
    Sheikh, Y., Khan, E.A., Kanade, T.: Mode seeking by medoidshifts. In: ICCV (2007)Google Scholar
  18. 18.
    Wang, Y., Huang, X.: Geometric median-shift over riemannian manifolds. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 268–279. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Huang, X., Wu, L.: Clustering via geometric median shift over riemannian manifolds. Information Science 20, 292–305 (2013)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Weibull, J.W.: Evolutionary game theory. MIT Press (1995)Google Scholar
  21. 21.
    Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall (1969)Google Scholar
  22. 22.
    Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yang Wang
    • 1
    • 2
  • Xuemin Lin
    • 1
  • Qing Zhang
    • 2
    • 1
  • Lin Wu
    • 1
  1. 1.The University of New South WalesSydneyAustralia
  2. 2.Australian E-Health Research CenterAustralia

Personalised recommendations