An Improved Depth-First Control Strategy for Query-Subquery Nets in Evaluating Queries to Horn Knowledge Bases

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 282)

Abstract

The QSQN evaluation method uses query-subquery nets and allows any control strategy for processing queries to Horn knowledge bases. This paper proposes an improved depth-first control strategy for the QSQN evaluation method to reduce the number of accesses to the intermediate relations and extensional relations. We came up to the improvement by using query-subquery nets to observe which relations are likely to grow or saturate and which ones are not yet affected by the computation and the other relations. Our intention is to accumulate as many as possible tuples or subqueries at each node of the query-subquery net before processing it. The experimental results confirm the outperformance of the improved version.

Keywords

Horn knowledge bases deductive databases query processing Magic-Set transformation QSQ QSQR QSQN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1995)Google Scholar
  2. 2.
    Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to implement logic programs. In: Proceedings of PODS 1986, pp. 1–15. ACM (1986)Google Scholar
  3. 3.
    Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10, 255–299 (1991)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cao, S.T.: On the efficiency of Query-Subquery Nets: an experimental point of view. In: Proceedings of SoICT 2013, pp. 148–157. ACM (2013)Google Scholar
  5. 5.
    Cao, S.T.: An implementation of the QSQN evaluation method using the DFS and IDFS control strategies (2014), http://mimuw.edu.pl/~sonct/QSQN14.zip
  6. 6.
    Cao, S.T., Nguyen, L.A., Szalas, A.: The Web Ontology Rule Language OWL 2 RL+ and Its Extensions. T. Computational Collective Intelligence 13, 152–175 (2014)Google Scholar
  7. 7.
    Cao, S.T., Nguyen, L.A., Szalas, A.: WORL: a nonmonotonic rule language for the Semantic Web. Vietnam J. Computer Science 1(1), 57–69 (2014)CrossRefGoogle Scholar
  8. 8.
    Freire, J., Swift, T., Warren, D.S.: Taking I/O seriously: Resolution reconsidered for disk. In: Naish, L. (ed.) Proc. of ICLP 1997, pp. 198–212. MIT Press (1997)Google Scholar
  9. 9.
    Madalińska-Bugaj, E., Nguyen, L.A.: A generalized QSQR evaluation method for Horn knowledge bases. ACM Trans. on Computational Logic 13(4), 32 (2012)Google Scholar
  10. 10.
    Nejdl, W.: Recursive strategies for answering recursive queries - the RQA/FQI strategy. In: Stocker, P.M., Kent, W., Hammersley, P. (eds.) Proceedings of VLDB 1987, pp. 43–50. Morgan Kaufmann (1987)Google Scholar
  11. 11.
    Nguyen, L.A., Cao, S.T.: Query-Subquery Nets. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS, vol. 7653, pp. 239–248. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Nguyen, L.A., Cao, S.T.: Query-Subquery Nets. CoRR, abs/1201.2564 (2012)Google Scholar
  13. 13.
    Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Efficient bottom-up evaluation of logic programs. In: Vandewalle, J. (ed.) The State of the Art in Computer Systems and Software Engineering. Kluwer Academic Publishers (1992)Google Scholar
  14. 14.
    Rohmer, J., Lescouer, R., Kerisit, J.-M.: The Alexander method – a technique for the processing of recursive axioms in deductive databases. New Generation Computing 4(3), 273–285 (1986)CrossRefMATHGoogle Scholar
  15. 15.
    Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  16. 16.
    Vieille, L.: Recursive axioms in deductive databases: The query/subquery approach. In: Proceedings of Expert Database Conf., pp. 253–267 (1986)Google Scholar
  17. 17.
    Vieille, L.: Recursive query processing: The power of logic. Theor. Comput. Sci. 69(1), 1–53 (1989)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Zhou, N.-F., Sato, T.: Efficient fixpoint computation in linear tabling. In: Proceedings of PPDP 2003, pp. 275–283. ACM (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Information TechnologyVinh UniversityVinhVietnam
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland
  3. 3.Faculty of Information TechnologyVNU University of Engineering and TechnologyHanoiVietnam

Personalised recommendations