In Situ Localization and Strain-Specific Quantification of Azospirillum and Other Diazotrophic Plant Growth-Promoting Rhizobacteria Using Antibodies and Molecular Probes

  • Anton Hartmann
  • Euan K. James
  • Frans J. deBruijn
  • Stefan Schwab
  • Michael Rothballer
  • Michael Schmid


A central issue in the understanding of the interaction and symbiotic function of diazotrophic bacteria with non-leguminous crop plants is detailed knowledge about the localization of the associated diazotrophic bacteria within the plant, their in situ activities in the plant-associated niches, and strain-specific quantification of inoculated bacteria. In addition to the colonization of rhizosphere soil and the rhizoplane, it has become apparent that an endophytic location of a diazotroph would provide it with a higher potential to interact more closely with the plant, particularly with respect to increasing the availability of carbon and energy nutrients derived from the plant, as well as the possibility, in return, of improving the transfer of bacterial-derived metabolites to the plant. Detailed localization of bacteria was successfully performed using fluorescence labeled ribosome-directed oligonucleotide probes in the fluorescence in situ hybridization (FISH) approach coupled to the use of confocal laser scanning microscopy (CLSM), and via immunolocalization with specific antibodies using transmission electron microscopy (TEM). Furthermore, the fate of inoculated bacteria could be traced by using specifically marked strains by applying the genes for the green or red fluorescent protein (GFP, RFP) and β-glucuronidase (GUS). Strain-specific quantification approaches for inoculants based on quantitative PCR using sequence characterized amplified regions (SCARs) and other genomic marker sequences have been developed and successfully applied. In this chapter major achievements and existing obstacles using these high resolution approaches to analyze bacteria in situ are presented together with some basic protocols.


Minimal Inhibitory Concentration Immunogold Label Diazotrophic Bacterium Endophytic Colonization Transmission Electron Microscopy Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alqueres S, Meneses C, Rouws L, Rothballer M, Baldani JI, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus strain PAL5. Mol Plant Microbe Interact 26:937–945CrossRefPubMedGoogle Scholar
  2. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770PubMedCentralPubMedGoogle Scholar
  3. Aßmus B, Hutzler P, Kirchhof G, Amann RI, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019PubMedCentralPubMedGoogle Scholar
  4. Aßmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotide probes. Microb Ecol 33:32–40CrossRefPubMedGoogle Scholar
  5. Baldani VLD, Baldani JI, Döbereiner J (1987) Inoculation of field-grown wheat with Azospirillum spp. in Brazil. Biol Fertil Soils 4:37–40Google Scholar
  6. Branco R, Cristóvao A, Morais PV (2013) Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8:e54005CrossRefPubMedCentralPubMedGoogle Scholar
  7. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser scanning microscopy. Front Microbiol 5:94. doi: 10.3389/fmicb.2014.00094 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191PubMedCentralPubMedGoogle Scholar
  9. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP (2005) A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443–448CrossRefPubMedGoogle Scholar
  10. Couillerot O, Bouffaud ML, Baudoin E, Muller D, Caballero-Mellado J, Moenne-Loccoz Y (2010a) Development of a real-time PCR method to quantify the PGPR-strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol Biochem 42:2298–2305CrossRefGoogle Scholar
  11. Couillerot O, Poirier MA, Prigent-Combaret C, Mavingui P, Caballero-Mellado J, Moenne-Loccoz Y (2010b) Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. J Appl Microbiol 109:528–538PubMedGoogle Scholar
  12. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572PubMedCentralPubMedGoogle Scholar
  13. Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715PubMedCentralPubMedGoogle Scholar
  14. Fuentes-Ramirez LE, Caballero-Mellado J, Seúlveda J, Martinez-Romero E (1999) Colonization of sugarcane by Acetobacter vinelandii is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128Google Scholar
  15. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645CrossRefPubMedCentralPubMedGoogle Scholar
  16. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145CrossRefGoogle Scholar
  17. Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F, Haas D (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237CrossRefPubMedGoogle Scholar
  18. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86CrossRefPubMedGoogle Scholar
  19. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923PubMedCentralPubMedGoogle Scholar
  20. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoneae 342. Mol Plant-Microbe Interact 17:1078–1085CrossRefPubMedGoogle Scholar
  21. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  22. James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L Moench. J Exp Bot 48:785–797CrossRefGoogle Scholar
  23. James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva L, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMedGoogle Scholar
  24. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906CrossRefPubMedGoogle Scholar
  25. Katzen F, Becker A, Ielmini MV, Oddo CG, Ielpi L (1999) New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol 65:278–282PubMedCentralPubMedGoogle Scholar
  26. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefPubMedGoogle Scholar
  27. Levanony H, Bashan Y, Romano B, Klein E (1989) Ultrastructural localization and identification of Azospirillum brasilense Cd on and within roots by immunogold labelling. Plant Soil 117:207–218CrossRefGoogle Scholar
  28. Luna MF, Galar ML, Aprea J, Molinari ML, Boiardi JL (2010) Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnol Lett 32:1071–1076CrossRefPubMedGoogle Scholar
  29. Obranic S, Babic F, Maravic-Vlahovicek G (2013) Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70:263–267CrossRefPubMedGoogle Scholar
  30. Olivares FL, James EK (2008a) Localization of diazotrophic bacteria on and within Gramineous plants. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant-associated microbes: a laboratory manual part A: bacteria. BBi, Piikkiö, pp 1–8Google Scholar
  31. Olivares FL, James EK (2008b) Electron microscopy of plant growth-promoting bacteria using cryotechniques. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant-associated microbes: a laboratory manual part A: bacteria. BBi, Piikkiö, pp 176–183Google Scholar
  32. Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:723–737CrossRefGoogle Scholar
  33. Rademaker JLW, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–667CrossRefPubMedGoogle Scholar
  34. Ramos HJO, Roncato-Maccari LDB, Souza EM, Soares-Ramos JRL, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–252CrossRefPubMedGoogle Scholar
  35. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443CrossRefPubMedGoogle Scholar
  36. Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7:1839–1846CrossRefPubMedGoogle Scholar
  37. Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95CrossRefPubMedGoogle Scholar
  38. Rouws LFM, Meneses CHSG, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus PAL5 marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330CrossRefPubMedGoogle Scholar
  39. Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179Google Scholar
  40. Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy. J Microsc 171:171–177Google Scholar
  41. Schloter M, Moens S, Croes C, Reidel G, Esquenet M, De Mot R, Hartmann A, Michiels K (1994) Characterization of cell surface components of Azospirillum brasilense Sp7 as antigenic determinants for strain-specific monoclonal antibodies. Microbiology 140:823–828CrossRefGoogle Scholar
  42. Sorensen J, Nicolaisen MH, Ron E, Simonet P (2009) Molecular tools in the rhizosphere microbiology—from single-cell to whole-community analysis. Plant Soil 321:483–512CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anton Hartmann
    • 1
  • Euan K. James
    • 2
  • Frans J. deBruijn
    • 3
  • Stefan Schwab
    • 4
  • Michael Rothballer
    • 1
  • Michael Schmid
    • 1
  1. 1.Department Environmental Sciences, Research Unit Microbe-Plant InteractionsHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
  2. 2.The James Hutton InstituteDundeeScotland, UK
  3. 3.Laboratory of Plant-Microbe-InteractionsToulouseFrance
  4. 4.EMBRAPA-AgrobiologiaSeropédicaBrazil

Personalised recommendations