Skip to main content

Function of ABCBs in Light Signaling

  • Chapter
  • First Online:
Plant ABC Transporters

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 22))

  • 1548 Accesses

Abstract

Light signaling controls the growth and development of plants through regulating gene expression and the action of phytohormones including auxin. Among 21 full-size ATP-binding cassette protein subfamily B (ABCB) genes in the Arabidopsis thaliana genome, ABCB19/PGP19/MDR1 (P-GLYCOPROTEIN19/MULTIDRUG RESISTANCE1) and its closest homolog ABCB1/PGP1 encode auxin transporters, and these functions have been well studied in the light responses of plants. They are involved not only in photomorphogenesis including inhibition of hypocotyl elongation and apical hook opening but also in photomovements including phototropic responses and light-induced randomization of hypocotyl growth orientation. Here, we review the functional regulation of ABCB19 by light signaling, and then discuss the functions of ABCB19 and ABCB1 for each light response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bailly A, Sovero V, Vincenzetti V et al (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR et al (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boerjan W, Cervera M-T, Delarue M et al (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christie JM, Murphy AS (2013) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100:35–46

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Yang H, Richter GL et al. (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9(6): e1001076. doi: 10.1371/journal.pbio.1001076

  • Delarue M, Prinsen E, Onckelen V et al (1998) sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E et al (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    Article  CAS  PubMed  Google Scholar 

  • Friml J, WiÅ›niewska J, Benková E et al (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Geisler M, Kolukisaoglu H, Bouchard R et al (2003) TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14:4238–4249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haga K, Sakai T (2012) PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol 160:763–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haga K, Takano M, Neumann R et al (2005) The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halliday KJ, Martínez-García JF, Josse EM (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:a001586. doi:10.1101/cshperspect.a001586

    Article  PubMed Central  PubMed  Google Scholar 

  • Hangarter RP (1997) Gravity, light and plant form. Plant Cell Environ 20:796–800

    Article  CAS  PubMed  Google Scholar 

  • Henrichs S, Wang B, Fukao Y et al (2012) Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J 31:2965–2980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K, Shin J, Lee S-H et al (2011) Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proc Natl Acad Sci U S A 108:1729–1734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King JJ, Stimart DP, Fisher RH et al (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40:826–834

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR, Wu G, Ljung K et al (2009) Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 multidrug resistance-like transporter. Plant J 60:91–101

    Article  CAS  PubMed  Google Scholar 

  • Li H, Johnson P, Stepanova A et al (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Wang H (2005) Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol 138:949–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagashima A, Suzuki G, Uehara Y et al (2008a) Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J 53:516–529

    Article  CAS  PubMed  Google Scholar 

  • Nagashima A, Uehara Y, Sakai T (2008b) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA et al (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Ohgishi M, Saji K, Okada K et al (2004) Functional analysis of each blue-light receptor, cry1, cry2, phot1 and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci U S A 101:2223–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M et al (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed Central  PubMed  Google Scholar 

  • Robert HS, Offringa R (2008) Regulation of auxin transport polarity by AGC kinases. Curr Opin Plant Biol 11:495–502

    Article  CAS  PubMed  Google Scholar 

  • Robson PR, Smith H (1996) Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls. Plant Physiol 110:211–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai T, Haga K (2012) Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol 53:1517–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sidler M, Hassa P, Hasan S et al (1998) Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10:1623–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A et al (2009) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida-Mayama T, Sakai T, Hanada A et al (2010) Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62:653–662

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Jasik J, Wang L et al (2012) The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24:551–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willige BC, Ahlers S, Zourelidou M et al (2013) D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25:1674–1688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Cameron JN, Ljung K et al (2010a) A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J 62:179–191

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Otegui MS, Spalding EP (2010b) The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22:3295–3304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR et al (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Gene Dev 16:3100–3112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sakai, T., Uehara, Y., Nagashima, A. (2014). Function of ABCBs in Light Signaling. In: Geisler, M. (eds) Plant ABC Transporters. Signaling and Communication in Plants, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06511-3_16

Download citation

Publish with us

Policies and ethics