ABC Transporters and Heavy Metals

  • Won-Yong Song
  • Jiyoung Park
  • Cornelia Eisenach
  • Masayoshi Maeshima
  • Youngsook Lee
  • Enrico Martinoia
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 22)


The first evidence showing that ABC transporters are involved in heavy metal resistance in eukaryotic cells has been obtained from experiments in Schizosaccharomyces pombe and Saccharomyces cerevisae, where a half-size transporter of the ABCB subclass and an ABCC-type transporter, respectively, have been shown to confer heavy metal tolerance. Biochemical studies have indicated that vacuolar ABC transporters should also play an important role in heavy metal detoxification in plants. But it was only recently that two ABCC-type transporters, AtABCC1 and AtABCC2, have been identified as major apo-phytochelatin and phytochelatin-heavy metal(oid) complex transporters. Several plasma membrane transporters have also been shown to confer heavy metal resistance. However, with the exception of STAR1, an UDP glucose exporter, which—by altering cell wall composition—confers aluminum tolerance, the substrates required to be transported to confer heavy metal resistance by these plasma membrane-localized ABC proteins are still not elucidated. A mitochondrial ABC transporter AtATM3 was shown to be required for plant growth and development. The different studies indicate that this transporter is important for the production of cytosolic iron sulfur complexes and molybdenum cofactors, prosthetic groups required for several enzymes. However, the final proof as to which substrate is transported by AtATM3 is still missing. Several laboratories took advantage of the fact that ABC transporters are involved in heavy metal tolerance to generate transgenic plants suitable for phytoremediation. The results show that overexpression of ABC proteins alone is not sufficient to produce plants that can efficiently decontaminate soils, but they indicate that this class of transporters, when combined with other transporters and enzymes involved in heavy metal transport and detoxification, may prove a good solution to produce plants that can stabilize, and in the long term clean up, soils contaminated with heavy metals.


Heavy Metal Vacuolar Membrane Heavy Metal Tolerance Aluminum Tolerance Heavy Metal Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work performed in the authors laboratories was supported by The Global Research Laboratory Program of the Ministry of Science, Korea, the Swiss National Foundation and the Ministry of Education, Sports, Culture, Science and Technology of Japan.


  1. Bätz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98Google Scholar
  2. Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011a) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tiss Org Cult 107(1):69–77CrossRefGoogle Scholar
  4. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim YP, Liu JR (2011b) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tiss Org Cult 105:85–91CrossRefGoogle Scholar
  5. Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267PubMedCrossRefGoogle Scholar
  6. Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816PubMedCrossRefGoogle Scholar
  7. Chen S, Sánchez-Fernández R, Lyver ER, Dancis A, Rea PA (2007) Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282:21561–21571PubMedCrossRefGoogle Scholar
  8. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332PubMedCrossRefGoogle Scholar
  9. Clemens S, Palmgren MG, Kramer UA (2002) Long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  10. Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216PubMedCrossRefGoogle Scholar
  11. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Alvarez-Fernández A, Briat JF (2013) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167PubMedCrossRefGoogle Scholar
  13. Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C (2008) AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol 8:22–32PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisae. Proc Natl Acad Sci USA 96:5001–5006PubMedCentralPubMedCrossRefGoogle Scholar
  15. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873CrossRefGoogle Scholar
  17. Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667PubMedCentralPubMedCrossRefGoogle Scholar
  18. Huang CF, Yamaji N, Ma JF (2010) Knockout of a bacterial-type ABC transporter gene, AtSTAR1, results in increased Al sensitivity in Arabidopsis. Plant Physiol 153:1669–1677PubMedCentralPubMedCrossRefGoogle Scholar
  19. Huang CF, Yamaji N, Chen Z, Ma JF (2012) A tonoplast‐localized half‐size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867PubMedCrossRefGoogle Scholar
  20. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. The Arabidopsis book. BioOne 9:e0153Google Scholar
  23. Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMedCrossRefGoogle Scholar
  25. Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318PubMedCrossRefGoogle Scholar
  26. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefGoogle Scholar
  27. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100PubMedCentralPubMedCrossRefGoogle Scholar
  28. Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458PubMedCrossRefGoogle Scholar
  29. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836PubMedCentralPubMedCrossRefGoogle Scholar
  30. Leighton J, Schatz G (1995) An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J 14:188–195PubMedCentralPubMedGoogle Scholar
  31. Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci U S A 94:42–47PubMedCentralPubMedCrossRefGoogle Scholar
  32. Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161PubMedCrossRefGoogle Scholar
  33. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102PubMedCrossRefGoogle Scholar
  34. Martinoia E, Meyer S, DeAngeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–214PubMedCrossRefGoogle Scholar
  35. Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234PubMedCrossRefGoogle Scholar
  36. Meyer S, De Angeli A, Fernie AR, Martinoia E (2010) Intra-and extra-cellular excretion of carboxylates. Trends Plant Sci 15:40–47PubMedCrossRefGoogle Scholar
  37. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149: 894–904PubMedCentralPubMedCrossRefGoogle Scholar
  38. Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt D, Guerinot ML (2009) The Ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338PubMedCentralPubMedCrossRefGoogle Scholar
  39. Napolitano M, Rubio MA, Santamaria-Gomez J, Olmedo-Verd E, Robinson NJ, Luque I (2012) Characterization of the response to zinc deficiency in the Cyanobacterium Anabaena sp strain PCC 7120. J Bacteriol 194:2426–2436PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499PubMedCentralPubMedGoogle Scholar
  41. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728PubMedCrossRefGoogle Scholar
  42. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340PubMedCentralPubMedCrossRefGoogle Scholar
  43. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288PubMedCrossRefGoogle Scholar
  44. Preveral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943PubMedCrossRefGoogle Scholar
  45. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375PubMedCrossRefGoogle Scholar
  46. Rodríguez-Celma J, Lin WD, Fu GM, Abadía J, López-Millán AF, Schmidt W (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162:1473–1485PubMedCentralPubMedCrossRefGoogle Scholar
  47. Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, Łangowski L, Nejedlá E, Fujita H, Ito H, Syōno K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy A, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci USA 107:10749–10753PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ryan P, Tyerman S, Sasaki T, Furuichi T, Yamamoto Y, Zhang W, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20PubMedCrossRefGoogle Scholar
  49. Salt DE, Rauser WE (1995) MgATP‐dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedCentralPubMedGoogle Scholar
  50. Schmid NB, Giehl RN, Döll S, Mock H-P, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N (2014) Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164:160–172PubMedCentralPubMedCrossRefGoogle Scholar
  51. Schwartz MS, Benci JL, Selote DS, Sharma AK, Chen AGY, Dang H, Fares H, Vatamaniuk OK (2010) Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. PLoS One 5:e9564PubMedCentralPubMedCrossRefGoogle Scholar
  52. Self WT, Grunden AM, Hasona A, Shanmugam KT (2003) Molybdate transport. Res Microbiol 152:311–321CrossRefGoogle Scholar
  53. Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346PubMedCentralPubMedCrossRefGoogle Scholar
  54. Shim D, Kim S, Choi Y-I, Song W-Y, Park J, Youk ES, Jeong S-C, Martinoia E, Noh E-W, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486PubMedCrossRefGoogle Scholar
  55. Singh BR, Gupta SK, Azaizeh H, Shilev S, Sudre D, Song W-Y, Martinoia E, Mench M (2011) Safety of food crops on land contaminated with trace elements. J Sci Food Agric 91:1349–1366PubMedCrossRefGoogle Scholar
  56. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedCrossRefGoogle Scholar
  57. Song WY, Park J, Mendoza-Cozatl D, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea P, Rentsch D, Schroder J, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192PubMedCentralPubMedCrossRefGoogle Scholar
  58. Song WY, Mendoza-Cózatl DG, Lee Y, Schroeder JI, Ahn S-N, Lee H-S, Wicker T, Martinoia E (2014) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in Barley and Arabidopsis. Plant Cell Environ 37(5):1192–1201PubMedCentralPubMedCrossRefGoogle Scholar
  59. Sooksa-Nguan T, Yakubov B, Kozlovskyy VI, Barkume CM, Howe KJ, Thannhauser TW, Rutzke MA, Hart JJ, Kochian LV, Rea PA (2009) Drosophila ABC transporter, DmHMT-1, confers tolerance to cadmium: DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration. J Biol Chem 284:354–362PubMedCrossRefGoogle Scholar
  60. Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746PubMedCentralPubMedCrossRefGoogle Scholar
  61. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857PubMedGoogle Scholar
  62. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948PubMedCentralPubMedCrossRefGoogle Scholar
  63. Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F (2010) A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell 22:468–480PubMedCentralPubMedCrossRefGoogle Scholar
  64. Tommasini R, Evers R, Vogt E, Mornet C, Zaman GJ, Schinkel AH, Borst P, Martinoia E (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci USA 93:6743–6748PubMedCentralPubMedCrossRefGoogle Scholar
  65. Tommasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780PubMedCrossRefGoogle Scholar
  66. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505PubMedCentralPubMedCrossRefGoogle Scholar
  67. Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280:23684–23690PubMedCrossRefGoogle Scholar
  68. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372PubMedCrossRefGoogle Scholar
  69. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  70. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wang TL, Wu M (2006) An ATP-binding cassette transporter related to yeast vacuolar ScYCF1 is important for Cd sequestration in Chlamydomonas reinhardtii. Plant Cell Environ 29:1901–1912PubMedCrossRefGoogle Scholar
  72. Williams PN et al (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540PubMedCrossRefGoogle Scholar
  73. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559PubMedCrossRefGoogle Scholar
  74. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247–273PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Won-Yong Song
    • 1
  • Jiyoung Park
    • 2
  • Cornelia Eisenach
    • 3
  • Masayoshi Maeshima
    • 4
  • Youngsook Lee
    • 1
  • Enrico Martinoia
    • 1
    • 3
  1. 1.POSTECH-UZH Cooperative Laboratory, Department Integrative Bioscience and BiotechnologyPohang University of Science and TechnologyPohangSouth Korea
  2. 2.Division of Biological SciencesUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.Institute of Plant BiologyUniversity ZurichZurichSwitzerland
  4. 4.Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations