VMSP: Efficient Vertical Mining of Maximal Sequential Patterns

  • Philippe Fournier-Viger
  • Cheng-Wei Wu
  • Antonio Gomariz
  • Vincent S. Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8436)


Sequential pattern mining is a popular data mining task with wide applications. However, it may present too many sequential patterns to users, which makes it difficult for users to comprehend the results. As a solution, it was proposed to mine maximal sequential patterns, a compact representation of the set of sequential patterns, which is often several orders of magnitude smaller than the set of all sequential patterns. However, the task of mining maximal patterns remains computationally expensive. To address this problem, we introduce a vertical mining algorithm named VMSP (Vertical mining of Maximal Sequential Patterns). It is to our knowledge the first vertical mining algorithm for mining maximal sequential patterns. An experimental study on five real datasets shows that VMSP is up to two orders of magnitude faster than the current state-of-the-art algorithm.


vertical mining maximal sequential pattern mining candidate pruning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Ramakrishnan, S.: Mining sequential patterns. In: Proc. 11th Intern. Conf. Data Engineering, pp. 3–14. IEEE (1995)Google Scholar
  2. 2.
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proc. 8th ACM Intern. Conf. Knowl. Discov. Data Mining, pp. 429–435. ACM (2002)Google Scholar
  3. 3.
    Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining Maximal Sequential Patterns without Candidate Maintenance. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part I. LNCS (LNAI), vol. 8346, pp. 169–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Sequential Pattern Mining Using Co-occurrence Information. In: Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining. LNCS (LNAI). Springer (2014)Google Scholar
  5. 5.
    García-Hernández, R.A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A new algorithm for fast discovery of maximal sequential patterns in a document collection. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 514–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS, vol. 7818, pp. 50–61. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Guan, E.-Z., Chang, X.-Y., Wang, Z., Zhou, C.-G.: Mining Maximal Sequential Patterns. In: Proc. 2nd Intern. Conf. Neural Networks and Brain, pp. 525–528 (2005)Google Scholar
  8. 8.
    Lin, N.P., Hao, W.-H., Chen, H.-J., Chueh, H.-E., Chang, C.-I.: Fast Mining Maximal Sequential Patterns. In: Proc. of the 7th Intern. Conf. on Simulation, Modeling and Optimization, Beijing, China, September 15-17, pp. 405–408 (2007)Google Scholar
  9. 9.
    Luo, C., Chung, S.: Efficient mining of maximal sequential patterns using multiple samples. In: Proc. 5th SIAM Intern. Conf. Data Mining, Newport Beach, CA (2005)Google Scholar
  10. 10.
    Lu, S., Li, C.: Apriori Adjust: An Efficient Algorithm for Discovering the Maximum Sequential Patterns. In: Proc. Intern. Workshop Knowl. Grid and Grid Intell. (2004)Google Scholar
  11. 11.
    Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM Computing Surveys 43(1), 1–41 (2010)CrossRefGoogle Scholar
  12. 12.
    Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans. Known. Data Engin. 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  13. 13.
    Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance. IEEE Trans. on Knowledge Data Engineering 19(8), 1042–1056 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1), 31–60 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philippe Fournier-Viger
    • 1
  • Cheng-Wei Wu
    • 2
  • Antonio Gomariz
    • 3
  • Vincent S. Tseng
    • 2
  1. 1.Dept. of Computer ScienceUniversity of MonctonCanada
  2. 2.Dept. of Computer Science and Information EngineeringNational Cheng Kung UniversityTaiwan
  3. 3.Dept. of Information and Communication EngineeringUniversity of MurciaSpain

Personalised recommendations