Formalizing and Verifying a Modern Build Language

  • Maria Christakis
  • K. Rustan M. Leino
  • Wolfram Schulte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8442)

Abstract

CloudMake is a software utility that automatically builds executable programs and libraries from source code—a modern Make utility. Its design gives rise to a number of possible optimizations, like cached builds, and the executables to be built are described using a functional programming language. This paper formally and mechanically verifies the correctness of central CloudMake algorithms.

The paper defines the CloudMake language using an operational semantics, but with a twist: the central operation exec is defined axiomatically, making it pluggable so that it can be replaced by calls to compilers, linkers, and other tools. The formalization and proofs of the central CloudMake algorithms are done entirely in Dafny, the proof engine of which is an SMT-based program verifier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development—Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)Google Scholar
  2. 2.
    Boyer, R.S., Hunt Jr., W.A.: Function memoization and unique object representation for ACL2 functions. In: ACL2 Theorem Prover and its Applications, pp. 81–89. ACM (2006)Google Scholar
  3. 3.
    Feldman, S.I.: Make—A program for maintaining computer programs. Software—Practice and Experience 9(4), 255–265 (1979)CrossRefMATHGoogle Scholar
  4. 4.
    Heydon, A., Levin, R., Mann, T., Yu, Y.: Software Configuration Management Using Vesta. Monographs in Computer Science. Springer (2006)Google Scholar
  5. 5.
    Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 2–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In: Workshop on Formal-IDE (to appear, 2014)Google Scholar
  9. 9.
    Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of compiler optimizations. In: PLDI, pp. 220–231. ACM (2003)Google Scholar
  10. 10.
    Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  11. 11.
    McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions. In: Proceedings of Applied Mathematica. Mathematical Aspects of Computer Science, vol. 19, pp. 33–41. American Mathematical Society (1967)Google Scholar
  12. 12.
    Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic. Machine Intelligence 7, 51–72 (1972)MATHGoogle Scholar
  13. 13.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Christakis
    • 1
  • K. Rustan M. Leino
    • 2
  • Wolfram Schulte
    • 3
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.MicrosoftRedmondUSA

Personalised recommendations