Electronic Structure Calculations with LDA\(+\)DMFT

  • Eva Pavarini
Part of the Mathematical Physics Studies book series (MPST)


The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (1) building material-specific Hubbard-like many-body models and (2) solving them in the dynamical mean-field approximation. Step (1) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (2) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.


Wannier Function Orbital Order Numerical Renormalization Group Screen Coulomb Interaction Quantum Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support of the Deutsche Forschungsgemeinschaft through FOR1346 is gratefully acknowledged.


  1. 1.
    Kohn, W.: Nobel lecture: electronic structure of matterwave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1998)Google Scholar
  2. 2.
    von Barth, U.: Physica Scripta 109, 9 (2004)CrossRefGoogle Scholar
  3. 3.
    Martin, R.M.: Electronic Structure, Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Metzner, W., Vollhardt, D.: Phys. Rev. Lett. 62, 324327 (1989)CrossRefGoogle Scholar
  5. 5.
    Georges, A., Kotliar, G.: Phys. Rev. B 45, 6479 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Rev. Mod. Phys. 68, 13 (1996)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A.C. Hewson, The Kondo Problem to Heavy Fermions. Cambridge University Press, Cambridge, (1993) (see, e.g., “The possibility of First Principles Calculations?”)Google Scholar
  8. 8.
    Anisimov, V.I., Poteryaev, A.I., Korotin, M.A., Anokhin, A.O., Kotliar, G., Phys, J.: Condens. Matter 9, 7359 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Lichtenstein, A.I., Katsnelson, M.I.: Phys. Rev. B 57, 6884 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    E. Pavarini, The LDA+DMFT approach, in Ref. [11] (2011)Google Scholar
  11. 11.
    Pavarini, E. Koch, E., Lichtenstein, A., Vollhardt, D. (eds.): The LDA+DMFT approach to strongly correlated materials. Reihe Modeling and Simulation, Vol. 1. Forschungszentrum Jülich (2011).
  12. 12.
    Pavarini, E., Koch, E., Anders, F., Jarrell, M. (eds.): Correlated electrons: from models to materials. Reihe Modeling and Simulation, Vol. 2. Forschungszentrum Jülich (2012).
  13. 13.
    Georges, A.: Lectures on the physics of highly correlated electron systems VIII. In: American Institute of Physics Conference Proceedings, vol. 715, p. 3 (2004)Google Scholar
  14. 14.
    Hafermann, H., Lechermann, F., Rubtsov, A.I., Katsnelson M.I., Lichtenstein A.I.: In Cabra, D.C., Honecker, A., Pujol P. (eds.) Many-Body Theories of Many-Particle in Condensed Matter Physics. Springer, Berlin, Heidelberg (2012)Google Scholar
  15. 15.
    Imada, M., Miyake, T.: J. Phys. Soc. Jpn. 79, 112001 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A.: Rev. Mod. Phys. 78, 865 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Pavarini, E., Yamasaki, A., Nuss, J., Andersen, O.K.: New J. Phys. 7, 188 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Andersen, O.K.: NMTOs and their Wannier Functions, in Ref. [12] (2012)Google Scholar
  19. 19.
    Marzari, N., Vanderbilt, D.: Phys. Rev. B 56, 12847 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Amadon, B., Lechermann, F., Georges, A., Jollet, F., Wehling, T.O., Lichtenstein, A.I.: Phys. Rev. B 77, 205112 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: J. Phys. Cond. Mat. 9, 767 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Gunnarsson, O., Andersen, O.K., Jepsen, O., Zaanen, J.: Phys. Rev. B 37, 1708 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Aryasetiawan, F., Imada, M., Georges, A., Koliar, G., Biermann, S., Lichtenstein, A.I.: Phys. Rev. B 70, 195104 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, G., Gorelov, E., Koch, E., Pavarini, E.: Phys. Rev. B 86, 184413 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Hirsch, J.E., Fye, R.M.: Phys. Rev. Lett. 56, 2521 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Gull, E., Millis, A.J., Lichtenstein, A.I., Rubtsov, A.N., Troyer, M., Werner, P.: Rev. Mod. Phys. 83, 349 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Flesch, A., Gorelov, E., Koch, E., Pavarini, E.: Phys. Rev. B 87, 195141 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Caffarel, M., Krauth, W.: Phys. Rev. Lett. 72, 1545 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Koch, E., Sangiovanni, G., Gunnarsson, O.: Phys. Rev. B 78, 115102 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Koch, E.: The Lanczos Method, in Ref. [11] (2011)Google Scholar
  31. 31.
    Jarrell, M.: The Maximum Entropy Method, in Ref. [12] (2012)Google Scholar
  32. 32.
    Mishchenko, A.: Stochastic Optimization for Analytical Continuation: When a priori Knowledge is Missing, in Ref. [12] (2012)Google Scholar
  33. 33.
    Pavarini, E., Koch, E., Lichtenstein, A.I.: Phys. Rev. Lett. 101, 266405 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Maier, T., Jarrell, M., Pruschke, T., Hettler, M.: Rev. Mod. Phys. 77, 1027 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Pavarini, E., Koch, E.: Phys. Rev. Lett. 104, 086402 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Flesch, A., Zhang, G., Koch, E., Pavarini, E.: Phys. Rev. B 85, 035124 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Kanamori, J.: J. Appl. Phys. 31, S14 (1960)ADSCrossRefGoogle Scholar
  38. 38.
    Pavarini, E., Biermann, S., Poteryaev, A., Lichtenstein, A.I., Georges, A., Andersen, O.K.: Phys. Rev. Lett. 92, 176403 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    De Raychaudhury, M., Pavarini, E., Andersen, O.K.: Phys. Rev. Lett. 99, 126402 (2007)Google Scholar
  40. 40.
    Gorelov, E., Karolak, M., Wehling, T.O., Lechermann, F., Lichtenstein, A.I., Pavarini, E.: Phys. Rev. Lett. 104, 226401 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Kugel, K.I., Khomskii, D.I.: Zh. Eksp. Teor. Fiz. 64, 1429 (1973) [Sov. Phys. JETP 37, 725 (1973)]Google Scholar
  42. 42.
    Yin, W.G., Volja, D., Ku, W.: Phys. Rev. Lett. 96, 116405 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Leonov, I., Binggeli, N., Korotin, D. Anisimov, V.I., Vollhardt D.: Phys. Rev. Lett. 101, 096405 (2008)Google Scholar
  44. 44.
    Leonov, I., Korotin, D., Binggeli, N., Anisimov, V.I., Vollhardt, D.: Phys. Rev. B 81, 075109 (2010)Google Scholar
  45. 45.
    Ghigna, P., Marco, S., Mazzoli, C., Brunelli, M., Laurenti, C., Ferrero, C.: Phys. Rev. B 81, 073107 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Marshall, L.G., Zhou, J., Zhang, J., Han, J., Vogel, S.C., Yu, X., Zhao, Y., Fernández-Díaz, M.T., Cheng, J., Goodenough, J.B.: Phys. Rev. B 87, 014109 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Rodríguez-Carvajal, J., Hennion, M., Moussa, F., Moudden, A.H., Pinsard, L., Revcolevschi, A.: Phys. Rev. B 57, R3189 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Zhou, J.-S., Goodenough, J.B.: Phys. Rev. B 68, 144406 (2003)Google Scholar
  49. 49.
    Zhou, J.-S., Goodenough, J.B.: Phys. Rev. Lett. 96, 247202 (2006)Google Scholar
  50. 50.
    Sánchez, M.C., Subías, G., García, J., Blasco, J.: Phys. Rev. Lett. 90, 045503 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Advanced SimulationForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations