Advertisement

Cosmological Models and Stability

  • Lars AnderssonEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 177)

Abstract

Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911–1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where “principles” such as the “cosmological principle” or the “Copernican principle” play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

Keywords

Cosmological Model Equivalence Principle Nonlinear Stability Cauchy Surface Cosmological Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank Jiří Bičák and Bernd Schmidt for their comments on an early version of the paper.

References

  1. 1.
    Caspar, M.: Kepler. Dover Publications, New York (1993)zbMATHGoogle Scholar
  2. 2.
    Einstein, A.: Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham. Ann. Phys. 343, 1059 (1912). doi: 10.1002/andp.19123431014
  3. 3.
    Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, (Berlin), 844–847 (1915)Google Scholar
  4. 4.
    Lovelock, D.: The uniqueness of the Einstein field equations in a four-dimensional space. Arch. Ration Mech. Anal. 33, 54 (1969). doi: 10.1007/BF00248156
  5. 5.
    Lovelock, D.: Divergence-free tensorial concomitants. Aequationes Math. 4, 127 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Haugan, M.P., Lämmerzahl, C.: Principles of equivalence: their role in gravitation physics and experiments that test them. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space. Lecture Notes in Physics, vol. 562, p. 195. Springer, Berlin (2001)Google Scholar
  7. 7.
    Bičák, J.: Einstein in Prague: relativity then and now. In: Bičák, J., Ledvinka, T. (eds.) General Relativity, Cosmology and Astrophysics: Perspectives 100 Years After Einstein in Prague, pp. 271–297. Springer, Berlin (2014)Google Scholar
  8. 8.
    Einstein, A.: Prinzipielles zur allgemeinen Relativitätstheorie. Ann. Phys. 360, 241 (1918). doi: 10.1002/andp.19183600402
  9. 9.
    Barbour, J.B.: The part played by Mach’s Principle in the genesis of relativistic cosmology. p. 47, Cambridge University Press, Cambridge (1990)Google Scholar
  10. 10.
    Bičák, J., Katz, J., Lynden-Bell, D.: Cosmological perturbation theory, instantaneous gauges, and local inertial frames. Phys. Rev. D 76(6), 063501 (2007). doi: 10.1103/PhysRevD.76.063501 ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Will, C.: Testing Machian effects in laboratory and space experiments. In: Barbour, J.B., Pfister, H. (eds.) Mach’s Principle: From Newton’s Bucket to Quantum Gravity, p. 365. (1995)Google Scholar
  12. 12.
    Barbour, J.B., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Basel (1995)zbMATHGoogle Scholar
  13. 13.
    Lahav, O., Suto, Y.: Measuring our universe from galaxy redshift surveys. Living Rev. Relativ. 7, 8 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Le Verrier, U.J.: Theorie du mouvement de mercure. Ann. l’Obs. Paris 5, 1 (1859)Google Scholar
  15. 15.
    Lescarbault, M., Le Verrier, U.J.: Passage d’une planete sur le disque du soleil. Ann. l’Obs. Paris 5, 394 (1860)ADSGoogle Scholar
  16. 16.
    Hall, A.: A suggestion in the theory of mercury. Astron. J. 14, 49 (1894). doi: 10.1086/102055 ADSCrossRefGoogle Scholar
  17. 17.
    Dyson, F.W., Eddington, A.S., Davidson, C.: A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of may 29, 1919. R. Soc. Lond. Philos. Trans. Ser. A 220, 291 (1920). doi: 10.1098/rsta.1920.0009 ADSCrossRefGoogle Scholar
  18. 18.
    Norton, J.D.: The Cosmological Woes of Newtonian Gravitation Theory, p. 271. Birkhäuser, Boston (1999)Google Scholar
  19. 19.
    Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin). 142–152 (1917)Google Scholar
  20. 20.
    Friedman, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377 (1922). doi: 10.1007/BF01332580
  21. 21.
    Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168 (1929). doi: 10.1073/pnas.15.3.168 ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Milne, E.A.: World-structure and the expansion of the universe. Mit 6 Abbildungen. Z. Angew. Phys. 6, 1 (1933)ADSGoogle Scholar
  23. 23.
    Robertson, H.P.: Relativistic cosmology. Rev. Mod. Phys. 5, 62 (1933). doi: 10.1103/RevModPhys.5.62 ADSCrossRefGoogle Scholar
  24. 24.
    Walker, A.G.: On Riemanntan spaces with spherical symmetry about a line, and the conditions for isotropy in Genj relativity. Q. J. Math. 6, 81 (1935). doi: 10.1093/qmath/os-6.1.81 ADSCrossRefGoogle Scholar
  25. 25.
    Robertson, H.P.: On E. A. Milne’s theory of world structure. Z. Angew. Phys. 7, 153 (1933)ADSGoogle Scholar
  26. 26.
    Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc. 108, 252 (1948)ADSzbMATHGoogle Scholar
  27. 27.
    Hoyle, F.: A new model for the expanding universe. Mon. Not. R. Astron. Soc. 108, 372 (1948)ADSzbMATHGoogle Scholar
  28. 28.
    Kragh, H.: Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press, Princeton (1996)Google Scholar
  29. 29.
    Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)Google Scholar
  30. 30.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  31. 31.
    Peebles, P.J.E.: From Precision Cosmology to Accurate Cosmology. ArXiv e-prints astro-ph/0208037] (2002)
  32. 32.
    Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  33. 33.
    Lake, K.: The flatness problem and \(\lambda \). Phys. Rev. Lett. 94(20), 201102 (2005). doi:  10.1103/PhysRevLett.94.201102 ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    Helbig, P.: Is there a flatness problem in classical cosmology? Mon. Not. R. Astron. Soc. 421, 561 (2012). doi: 10.1111/j.1365-2966.2011.20334.x ADSGoogle Scholar
  35. 35.
    Alpher, R.A., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803 (1948). doi: 10.1103/PhysRev.73.803 ADSCrossRefGoogle Scholar
  36. 36.
    Alpher, R.A., Herman, R.: Evolution of the universe. Nature 162, 774 (1948). doi: 10.1038/162774b0 ADSCrossRefGoogle Scholar
  37. 37.
    van den Bergh, S.: The early history of dark matter. Publ. Astron. Soc. Pac. 111, 657 (1999). doi: 10.1086/316369 ADSCrossRefGoogle Scholar
  38. 38.
    Riess, A.G., Strolger, L.G., Casertano, S., et al.: New Hubble Space Telescope discoveries of type Ia supernovae at \(z\ge 1\): narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007). doi: 10.1086/510378
  39. 39.
    Carroll, S.M.: The cosmological constant. Living Rev. Relativ. 4, 1 (2001). doi: 10.12942/lrr-2001-1 ADSCrossRefGoogle Scholar
  40. 40.
    Clarkson, C.: Establishing homogeneity of the universe in the shadow of dark energy. C. R. Phys. 13, 682 (2012). doi: 10.1016/j.crhy.2012.04.005 ADSCrossRefGoogle Scholar
  41. 41.
    Maartens, R.: Is the universe homogeneous? R. Soc. Lond. Philos. Trans. Ser. A 369, 5115 (2011). doi: 10.1098/rsta.2011.0289 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Räsänen, S.: Relation between the isotropy of the cmb and the geometry of the universe. Phys. Rev. D 79(12), 123522 (2009). doi: 10.1103/PhysRevD.79.123522 CrossRefGoogle Scholar
  43. 43.
    Marinoni, C., Bel, J., Buzzi, A.: The scale of cosmic isotropy. J. Cosmol. Astropart. Phys. 10, 036 (2012). doi: 10.1088/1475-7516/2012/10/036 ADSCrossRefGoogle Scholar
  44. 44.
    Sylos, F.: Labini. Inhomogen. Universe Class. Quantum Gravity 28(16), 164003 (2011). doi: 10.1088/0264-9381/28/16/164003 ADSCrossRefGoogle Scholar
  45. 45.
    Clowes, R.G., Harris, K.A., Raghunathan, S., et al.: A structure in the early universe at z\(\sim \)1.3 that exceeds the homogeneity scale of the R-W concordance cosmology. ArXiv e-prints arXiv:1211.6256 (2012)
  46. 46.
    Andersson, L., Coley, A.: Inhomogeneous cosmological models and averaging in cosmology: overview. Class. Quantum Gravity 28(16), 160301 (2011). doi: 10.1088/0264-9381/28/16/160301 ADSCrossRefGoogle Scholar
  47. 47.
    Ellis, G.F.R.: Inhomogeneity effects in cosmology. Class. Quantum Gravity 28(16), 164001 (2011). doi: 10.1088/0264-9381/28/16/164001 ADSCrossRefGoogle Scholar
  48. 48.
    Kolb, E.W., Marra, V., Matarrese, S.: Cosmological background solutions and cosmological backreactions. Gen. Rel. Grav. 42, 1399 (2010). doi: 10.1007/s10714-009-0913-8 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Buchert, T.: Toward physical cosmology: focus on inhomogeneous geometry and its non-perturbative effects. Class. Quantum Gravity 28(16), 164007 (2011). doi: 10.1088/0264-9381/28/16/164007 ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Korzyński, M.: Covariant coarse graining of inhomogeneous dust flow in general relativity. Class. Quantum Gravity 27(10), 105015 (2010). doi: 10.1088/0264-9381/27/10/105015 ADSCrossRefGoogle Scholar
  51. 51.
    Räsänen, S.: Evaluating backreaction with the peak model of structure formation. J. Cosmol. Astropart. Phys. 4, 026 (2008). doi: 10.1088/1475-7516/2008/04/026 CrossRefGoogle Scholar
  52. 52.
    Wiegand, A., Buchert, T.: Multiscale cosmology and structure-emerging dark energy: a plausibility analysis. Phys. Rev. D 82(2), 023523 (2010). doi: 10.1103/PhysRevD.82.023523 ADSCrossRefGoogle Scholar
  53. 53.
    Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99(25), 251101 (2007). doi: 10.1103/PhysRevLett.99.251101 ADSCrossRefGoogle Scholar
  54. 54.
    Clarkson, C., Ellis, G.F.R., Faltenbacher, A., et al.: (mis)interpreting supernovae observations in a lumpy universe. Mon. Not. R. Astron. Soc. 426, 1121 (2012). doi: 10.1111/j.1365-2966.2012.21750.x ADSCrossRefGoogle Scholar
  55. 55.
    Clifton, T., Rosquist, K., Tavakol, R.: An exact quantification of backreaction in relativistic cosmology. Phys. Rev. D 86(4), 043506 (2012). doi: 10.1103/PhysRevD.86.043506 ADSCrossRefGoogle Scholar
  56. 56.
    Bentivegna, E., Korzyński, M.: Evolution of a periodic eight-black-hole lattice in numerical relativity. Class. Quantum Gravity 29(16), 165007 (2012). doi: 10.1088/0264-9381/29/16/165007 ADSCrossRefGoogle Scholar
  57. 57.
    Marra, V., Kolb, E.W., Matarrese, S.: Light-cone averages in a swiss-cheese universe. Phys. Rev. D 77(2), 023003 (2008). doi: 10.1103/PhysRevD.77.023003 ADSCrossRefGoogle Scholar
  58. 58.
    Mess, G.: Lorentz spacetimes of constant curvature. Technical Report IHES/M/90/28. Institute des Hautes Etudes Scientifiques (1990)Google Scholar
  59. 59.
    Andersson, L., Barbot, T., Benedetti, R., et al.: Notes on: “Lorentz spacetimes of constant curvature” [geom. dedicata 126 (2007), 3–45] by G. Mess. Geom. Dedicata 126, 47 (2007). doi: 10.1007/s10711-007-9164-6
  60. 60.
    Andersson, L., Barbot, T., Beguin, F., Zeghib, A.: Cosmological time versus cmc time. Asian J. Math. 16, 37 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Andersson, L.: Constant mean curvature foliations of flat space-times. Comm. Anal. Geom. 10(5), 1125 (2002)zbMATHMathSciNetGoogle Scholar
  62. 62.
    Andersson, L.: Constant mean curvature foliations of simplicial flat spacetimes. Comm. Anal. Geom. 13(5), 963 (2005). http://projecteuclid.org/getRecord?id=euclid.cag/1144438303
  63. 63.
    Andersson, L., Moncrief, V., Tromba, A.J.: On the global evolution problem in \(2+1\) gravity. J. Geom. Phys. 23(3–4), 191 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Fischer, A.E., Moncrief, V.: Hamiltonian reduction of Einstein’s equations and the geometrization of three-manifolds. In: International Conference on Differential Equations, vol. 1, 2, pp. 279–282. World Scientific Publishing, River Edge (2000) (Berlin, 1999)Google Scholar
  65. 65.
    Anderson, M.T.: On long-time evolution in general relativity and geometrization of 3-manifolds. Comm. Math. Phys. 222(3), 533 (2001). doi: 10.1007/s002200100527 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. ArXiv e-prints arXiv:0908.2265 (2009)
  67. 67.
    Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Comm. Math. Phys. 107(4), 587 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  69. 69.
    Klainerman, S., Nicolò, F.: Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Class. Quantum Gravity 20, 3215 (2003). doi: 10.1088/0264-9381/20/14/319 ADSCrossRefzbMATHGoogle Scholar
  70. 70.
    Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 171(2–3), 1401 (2010). doi: 10.4007/annals.2010.171.1401 CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Bieri, L., Zipser, N.: AMS/IP Studies in Advanced Mathematics. Extensions of the stability theorem of the Minkowski space in general relativity, vol. 45. American Mathematical Society, Providence (2009)Google Scholar
  72. 72.
    Andersson, L., Galloway, G.J.: Ds/cft and spacetime topology. Adv. Theor. Math. Phys. 6(2), 307 (2002)zbMATHMathSciNetGoogle Scholar
  73. 73.
    Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Differ. Geom. 34(2), 275 (1991)zbMATHMathSciNetGoogle Scholar
  74. 74.
    Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173, 123 (2008). doi: 10.1007/s00222-008-0117-y ADSCrossRefzbMATHMathSciNetGoogle Scholar
  75. 75.
    Ringström, H.: Power law inflation. Commun. Math. Phys. 290, 155 (2009). doi: 10.1007/s00220-009-0812-6 ADSCrossRefzbMATHGoogle Scholar
  76. 76.
    Rodnianski, I., Speck, J.: The stability of the irrotational Euler-Einstein system with a positive cosmological constant. ArXiv e-prints arXiv:0911.5501 (2009)
  77. 77.
    Speck, J.: The nonlinear future-stability of the flrw family of solutions to the Euler-Einstein system with a positive cosmological constant. ArXiv e-prints arXiv:1102.1501 [math.AP] (2011)
  78. 78.
    Ringström, H.: On the topology and future stability of models of the universe. Oxford University Press, Oxford, New York (2013)Google Scholar
  79. 79.
    Andersson, L., Moncrief, V.: Future complete vacuum spacetimes. In: The Einstein equations and the large scale behavior of gravitational fields, pp. 299–330. Birkhäuser, Basel (2004)Google Scholar
  80. 80.
    Andersson, L., Moncrief, V.: Einstein spaces as attractors for the Einstein flow. J. Differ. Geom. 89(1), 1 (2011). http://projecteuclid.org/getRecord?id=euclid.jdg/1324476750
  81. 81.
    Reiris, M.: Aspects of the long time evolution in general relativity and geometrizations of three-manifolds (ProQuest LLC, Ann Arbor, MI). Ph. D. Thesis. State University of New York at Stony Brook http://gateway.proquest.com/openurl?urlver=Z39.88-2004&rftvalfmt=info:ofi/fmt:kev:mtx:dissertation&resdat=xri:pqdiss&rftdat=xri:pqdiss:3206447 (2005)
  82. 82.
    Reiris, M.: The ground state and the long-time evolution in the cmc Einstein flow. Ann. Henri Poincaré 10(8), 1559 (2010). doi: 10.1007/s00023-010-0027-6 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    Rendall, A.D., Tod, K.P.: Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric. Class. Quantum Gravity 16, 1705 (1999). doi: 10.1088/0264-9381/16/6/305 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  84. 84.
    Heinzle, J.M., Uggla, C.: Dynamics of the spatially homogeneous Bianchi type I Einstein-Vlasov equations. Class. Quantum Gravity 23, 3463 (2006). doi: 10.1088/0264-9381/23/10/016
  85. 85.
    Nungesser, E.: Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry. J. Phys. Conf. Ser. 314(1), 012097 (2011). doi: 10.1088/1742-6596/314/1/012097
  86. 86.
    Speck, J.: The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state. ArXiv e-prints arXiv:1201.1963 (2012)
  87. 87.
    Choquet-Bruhat, Y., Moncrief, V.: Future global in time Einsteinian spacetimes with \(\rm {u}(1)\) isometry group. Ann. Henri Poincaré 2(6), 1007 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    Choquet-Bruhat, Y.: Future complete \({\rm {U}}(1)\) symmetric Einsteinian spacetimes, the unpolarized case. In: The Einstein equations and the large scale behavior of gravitational fields, pp. 251–298. Birkhäuser, Basel (2004)Google Scholar
  89. 89.
    Andersson, L., Heinzle, J.M.: Eternal acceleration from M-theory. Adv. Theor. Math. Phys. 11(3), 371 (2007). http://projecteuclid.org/getRecord?id=euclid.atmp/1185303966
  90. 90.
    Belinskiĭ, V.A., Khalatnikov, I.M., Lifshitz, E.M.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970). doi: 10.1080/00018737000101171 ADSCrossRefGoogle Scholar
  91. 91.
    Ringström, H.: Curvature blow up in bianchi viii and ix vacuum spacetimes. Class. Quantum Gravity 17, 713 (2000). doi: 10.1088/0264-9381/17/4/301 ADSCrossRefzbMATHGoogle Scholar
  92. 92.
    Belinskiĭ, V.A., Khalatnikov, I.M.: Effect of scalar and vector fields on the nature of the cosmological singularity. Soviet J. Exp. Theor. Phys. 36, 591 (1973)ADSGoogle Scholar
  93. 93.
    Demaret, J., Henneaux, M., Spindel, P.: Nonoscillatory behaviour in vacuum Kaluza-Klein cosmologies. Phys. Lett. B 164(1–3), 27 (1985)Google Scholar
  94. 94.
    Andersson, L., Rendall, A.D.: Quiescent cosmological singularities. Comm. Math. Phys. 218(3), 479 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  95. 95.
    Damour, T., Henneaux, M., Rendall, A.D., Weaver, M.: Kasner-like behaviour for subcritical einstein-matter systems. NASA STI/Recon Technical Report N 2, 87809 (2002)Google Scholar
  96. 96.
    Andersson, L.: Stability of doubly warped product spacetimes. In: Sidoravicius, V. (ed.) New Trends Math. Phys., pp. 23–32. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  97. 97.
    Andersson, L.: The global existence problem in general relativity. In: The Einstein equations and the large scale behavior of gravitational fields, pp. 71–120. Birkhäuser, Basel (2004)Google Scholar
  98. 98.
    Ringström, H.: The future asymptotics of Bianchi VIII vacuum solutions. Class. Quantum Gravity 18, 3791 (2001). doi: 10.1088/0264-9381/18/18/302
  99. 99.
    Heinzle, J.M., Ringström, H.: Future asymptotics of vacuum Bianchi type VI\(_{0}\) solutions. Class. Quantum Gravity 26, 145001 (2009). doi: 10.1088/0264-9381/26/14/145001
  100. 100.
    Ringström, H.: Cosmic censorship for Gowdy spacetimes. Living Rev. Relativ. 13, 2 (2010)Google Scholar
  101. 101.
    Béguin, F.: Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes. Class. Quantum Gravity 27(18), 185005 (2010). doi: 10.1088/0264-9381/27/18/185005
  102. 102.
    Liebscher, S., Härterich, J., Webster, K., Georgi, M.: Ancient dynamics in Bianchi models: approach to periodic cycles. Commun. Math. Phys. 305, 59 (2011). doi: 10.1007/s00220-011-1248-3
  103. 103.
    Reiterer, M., Trubowitz, E.: The BKL conjectures for spatially homogeneous spacetimes. ArXiv e-prints arXiv:1005.4908 (2010)
  104. 104.
    Heinzle, J.M., Uggla, C.: Mixmaster: fact and belief. Class. Quantum Gravity 26(7), 075016 (2009). doi: 10.1088/0264-9381/26/7/075016 ADSCrossRefMathSciNetGoogle Scholar
  105. 105.
    Andersson, L., van Elst, H., Lim, W.C., Uggla, C.: Asymptotic silence of generic cosmological singularities. Phys. Rev. Lett. 94(5), 051101 (2005). doi: 10.1103/PhysRevLett.94.051101 ADSCrossRefGoogle Scholar
  106. 106.
    Heinzle, J.M., Uggla, C., Lim, W.C.: Spike oscillations. Phys. Rev. D 86(10), 104049 (2012). doi: 10.1103/PhysRevD.86.104049 ADSCrossRefGoogle Scholar
  107. 107.
    Speck, J.: On big bang spacetimes. In Dafermos, M. et al (eds.) Mathematical Aspects of General Relativity, Oberwolfach Reports, vol. 37, p. 2308. (2012). doi: 10.4171/OWR/2012/37

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Albert Einstein InstitutePotsdamGermany

Personalised recommendations