Knowledge Fusion in Context-Aware Decision Support: Ontology-Based Modeling and Patterns

  • A. V. Smirnov
  • T. V. Levashova
  • N. G. Shilov
  • A. A. Krizhanovsky
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 317)


The purpose of this chapter is twofold: (1) introducing of a semantic modeling mechanism, which is applied to achieve context-based knowledge fusion in a decision support system and (2) discovery of context-based knowledge fusion patterns. An approach to ontology-based resource modeling is proposed. The set of resources comprises sources of data/information/knowledge, problem solving resources and various actors. The knowledge fusion patterns are generalized with regard to two aspects: (1) preserving internal structures of multiple sources from which information/knowledge is fused within the ontological structure of context and preserving internal structure of the context itself, and (2) preserving autonomies of the multiple sources and the context. Six knowledge fusion patterns have been discovered. They are simple fusion, inferred fusion, instantiated fusion, adapted fusion, flat fusion, and historical fusion.


Knowledge Source Knowledge Object Semantic Distance Operational Context Abstract Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present research was supported partly by projects funded by grants 12-07-00298, 12-01-00481, 13-07-12095, 14-07-00345, 14-07-00427 of the Russian Foundation for Basic Research, the project 213 of the research program “Information, control, and intelligent technologies & systems” of the Russian Academy of Sciences (RAS), the project 2.2 of the Nano- and Information Technologies Branch of RAS, and grant 074-U01 of the Government of the Russian Federation.


  1. 1.
    Scherl, R., Ulery, D.L.: Technologies for army KF. Final report, Monmouth: Monmouth University, Computer Science Department, West Long Branch, Report no. ARL-TR-3279 (2004)Google Scholar
  2. 2.
    Alun, P., Hui, K., Gray, A., Marti, P., Bench-Capon, T., et al.: Kraft: an agent architecture for KF. Int. J. Coop. Inf. Syst. 10(1–2), 171–195 (2001)Google Scholar
  3. 3.
    Holsapple, C.W., Whinston, A.B.: Building blocks for decision support systems. In: Ariav, G., Clifford, J. (eds.) New Directions for Database Systems, pp. 66–86. Ablex Publishing Corp, Norwood (1986)Google Scholar
  4. 4.
    Phan-Luong, V.: A framework for integrating information sources under lattice structure. Inform. Fusion 9(2), 278–292 (2008)CrossRefGoogle Scholar
  5. 5.
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.: Constraint-driven methodology for context-based decision support. J. Decis. Syst. 14(3), 279–301 (2005)CrossRefGoogle Scholar
  6. 6.
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T., Haritatos, F.: Knowledge source network configuration approach to knowledge logistics. Int. J. Gen. Syst. 32(3), 251–269 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bossé, É., Valin, P., Boury-Brisset, A.-C., Grenier, D.: Exploitation of a priori knowledge for information fusion. Inform. Fusion 7(2), 161–175 (2006)CrossRefGoogle Scholar
  8. 8.
    Gu, J., Xu, B., Chen, X.: An XML query rewriting mechanism with multiple ontologies integration based on complex semantic mapping. Inform. Fusion 9(4), 512–522 (2008)CrossRefGoogle Scholar
  9. 9.
    Yao, J., Raghavan, V.V., Wu, Z.: Web information fusion: a review of the state of the art. Inform. Fusion 9(4), 446–449 (2008)CrossRefGoogle Scholar
  10. 10.
    Little, E.G., Rogova, G.L.: Designing ontologies for higher level fusion. Inform. Fusion 10(1), 70–82 (2009)CrossRefGoogle Scholar
  11. 11.
    Dapoigny, R., Barlatier, P.: Formal foundations for situation awareness based on dependent type theory. Inform. Fusion 14(1), 87–107 (2013)Google Scholar
  12. 12.
    Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.: Knowledge logistics in information grid environment. Future Gener. Comp. Syst. 20(1), 61–79 (2004)CrossRefGoogle Scholar
  13. 13.
    Wiktionary, the free dictionary. Internet: Accessed 10 Oct 2012
  14. 14.
    Lee, K.-R.: Patterns and processes of contemporary technology fusion: the case of intelligent robots. Asian J. Technol. Innov. 15(2), 45–65 (2007)CrossRefGoogle Scholar
  15. 15.
    Grebla, H.A., Cenan, C.O., Stanca, L.: Knowledge fusion in academic networks, BRAIN: Broad Res. Artif. Intell. Neurosci. 1, 2 (2010). Accessed 10 Oct 2012
  16. 16.
    Kuo, T.-T., Tseng, S.-S., Lin, Y.-T.: Ontology-based KF framework using graph partitioning. In: Chung, P.W.H., Hinde, C.J., Ali, M. (eds.) Proceedings of IEA/AIE 2003. LNCS, vol. 2718, pp. 11–20 (2003)Google Scholar
  17. 17.
    Gou, J., Yang, J., Chen, Q.: Evolution and evaluation in KF system. In: Mira, J. Alvarez, J.R. (eds.) Proceedings of IWINAC 2005. LNCS, vols. 2718, 3562, pp. 192–201 (2005)Google Scholar
  18. 18.
    Laskey, K.B., Costa, P., Janssen, T.: Probabilistic ontologies for KF. In: Proceedings of the 11th International Conference Information Fusion, IEEE (2008). Accessed 10 Oct 2012
  19. 19.
    Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N.F., et al.: NCBO Resource Index: ontology-based search and mining of biomedical resources. J. Web Semant. 9(3), 316–324 (2011)CrossRefGoogle Scholar
  20. 20.
    Lin, L.Y., Lo, Y.J.: Knowledge creation and cooperation between cross-nation R&D institutes. Int. J. Electron. Bus. Manag. 8(1), 9–19 (2010)Google Scholar
  21. 21.
    Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Huebner, S.: Ontology-based integration of information—a survey of existing approaches. In: Proceedings of the Workshop on Ontologies and Information Sharing at the International Joint Conference Artificial Intelligence (IJCAI), pp. 108–117 (2001)Google Scholar
  22. 22.
    Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18(1), 1–31 (2003)CrossRefGoogle Scholar
  23. 23.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. J. Data Semant. 4, 146–171 (2005)Google Scholar
  24. 24.
    Chen, J., McQueen, R.J.: Knowledge transfer processes for different experience levels of knowledge recipients at an offshore technical support center. Inf. Technol. People 23(1), 54–79 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. V. Smirnov
    • 1
    • 2
  • T. V. Levashova
    • 1
  • N. G. Shilov
    • 1
  • A. A. Krizhanovsky
    • 1
  1. 1.Laboratory of Computer Aided Integrated SystemsSt. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.University ITMOSt. PetersburgRussia

Personalised recommendations