Efficient Sealed-Bid Auction Protocols Using Verifiable Secret Sharing

  • Mehrdad Nojoumian
  • Douglas R. Stinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8434)

Abstract

This article proposes efficient solutions for the construction of sealed-bid second-price and combinatorial auction protocols in an active adversary setting. The main reason for constructing secure auction protocols is that the losing bids can be used in the future auctions as well as negotiations if they are not kept private. Our motivation is to apply verifiable secret sharing in order to construct various kinds of sealed-bid auctions. We initially propose two secure second-price auction protocols with different masking methods. Subsequently, we provide two secure combinatorial auction protocols based on our second masking approach. In the first scheme, we apply an existing dynamic programming method. In the second protocol, we use inter-agent negotiation as an approximate solution in the multiple traveling salesman problem to determine auction outcomes. It is worth mentioning that our protocols are independent of the secret sharing scheme that is being used.

Keywords

Applied cryptography security and privacy in auctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Baudron, O., Stern, J.: Non-interactive private auctions. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 354–377. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Symposium on Theory of Computing, STOC, pp. 1–10 (1988)Google Scholar
  5. 5.
    Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference, vol. 48, pp. 313–317. AFIPS Press (1979)Google Scholar
  6. 6.
    Brandt, F.: A verifiable, bidder-resolved auction protocol. In: 5th Int. Workshop on Deception, Fraud and Trust in Agent Societies, Special Track on Privacy and Protection with Multi-Agent Systems, pp. 18–25 (2002)Google Scholar
  7. 7.
    Cachin, C.: Efficient private bidding and auctions with an oblivious third party. In: ACM Conference on Computer and Communications Security, pp. 120–127 (1999)Google Scholar
  8. 8.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: 26th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 383–395 (1985)Google Scholar
  9. 9.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction service. IEEE Transactions on Software Eng. 22(5), 302–312 (1996)CrossRefGoogle Scholar
  11. 11.
    Garay, J.A., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In: 3rd Workshop on E-Commerce, pp. 61–74. USENIX Association (1998)Google Scholar
  13. 13.
    Kikuchi, H.: (M+1)st-price auction protocol. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 341–363. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Kikuchi, H., Harkavy, M., Tygar, J.D.: Multi-round anonymous auction protocols. IEICE Transaction on Information and Systems 82, 769–777 (1999)Google Scholar
  15. 15.
    Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving winner and winning bid without revealing privacy of bids. In: 7th Int. Conference on Parallel and Distributed Systems, pp. 307–312. IEEE (2000)Google Scholar
  16. 16.
    Kim, I.C.: Task reallocation in multiagent systems based on vickrey auctioning. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 40–44. IOS Press (2002)Google Scholar
  17. 17.
    Krishnamachari, S., Nojoumian, M., Akkaya, K.: Implementation and analysis of dutch-style sealed-bid auctions: Computational vs unconditional security (2014) (Under Review Manuscript)Google Scholar
  18. 18.
    Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    MacWilliams, F., Sloane, N.: The theory of error-correcting codes. North-Holland Amsterdam (1978)Google Scholar
  20. 20.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  21. 21.
    Nguyen, K.Q., Traoré, J.: An online public auction protocol protecting bidder privacy. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 427–442. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Nojoumian, M., Stinson, D.R.: Unconditionally secure first-price auction protocols using a multicomponent commitment scheme. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Nojoumian, M., Stinson, D.R.: On dealer-free dynamic threshold schemes. Advances in Mathematics of Communications, AMC 7(1), 39–56 (2013)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.: Practical secrecy-preserving, verifiably correct and trustworthy auctions. Electronic Commerce Research and Applications 7(3), 294–312 (2008)CrossRefGoogle Scholar
  26. 26.
    Peng, K., Boyd, C., Dawson, E.: Optimization of electronic first-bid sealed-bid auction based on homomorphic secret sharing. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 84–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Robust, privacy protecting and publicly verifiable sealed-bid auction. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 147–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Five sealed-bid auction models. In: Australasian Information Security Workshop Conference, pp. 77–86. Australian Computer Society (2003)Google Scholar
  29. 29.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: 21th Annual ACM Symposium on Theory of Computing, STOC, pp. 73–85 (1989)Google Scholar
  30. 30.
    Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Stinson, D.R., Wei, R.: Unconditionally secure proactive secret sharing scheme with combinatorial structures. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 200–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Suzuki, K., Yokoo, M.: Secure combinatorial auctions by dynamic programming with polynomial secret sharing. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 44–56. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Suzuki, K., Yokoo, M.: Secure multi-attribute procurement auction. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 306–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance 16(1), 8–37 (1961)CrossRefGoogle Scholar
  36. 36.
    Viswanathan, K., Boyd, C., Dawson, E.: A three phased schema for sealed bid auction system design. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 412–426. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Watanabe, Y., Imai, H.: Reducing the round complexity of a sealed-bid auction protocol with an off-line ttp. In: ACM Conference on Computer and Communications Security, CCS, pp. 80–86 (2000)Google Scholar
  38. 38.
    Yao, A.C.-C.: Protocols for secure computations. In: 23rd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 160–164 (1982)Google Scholar
  39. 39.
    Yokoo, M., Suzuki, K.: Secure multi-agent dynamic programming based on homomorphic encryption and its application to combinatorial auctions. In: 1st International Joint Conference on AAMAS, pp. 112–119. ACM (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mehrdad Nojoumian
    • 1
  • Douglas R. Stinson
    • 2
  1. 1.Department of Computer ScienceSouthern Illinois UniversityCarbondaleUSA
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations