ProMARTES: Performance Analysis Method and Toolkit for Real-Time Systems

  • Konstantinos Triantafyllidis
  • Egor Bondarev
  • Peter H. N. de With
Chapter

Abstract

In this chapter, we present a cycle-accurate performance analysis method for real-time systems that incorporates the following phases: 1. profiling SW components at high accuracy, 2. modeling the obtained performance measurements in MARTE-compatible models, 3. generation, scheduling analysis and simulation of a system model, 4. analysis of the obtained performance metrics, and 5. a subsequent architecture improvement. The method has been applied to a new autonomous navigation system for robots with advanced sensing capabilities, enabling validation of multiple performance analysis aspects, such as SW/HW mapping, real-time requirements and synchronization on multiprocessor schemes. The case-study has proved that the method is able to use the profiled low-level performance metrics throughout all the phases, resulting in high prediction accuracy. We have found a range of inefficient design directions leading to RT requirements failure, and recommended to robot owners a design decision set to reach an optimal solution.

Keywords

Profiling Modeling Component-based Simulation Schedulability analysis Performance analysis  Evaluation Prediction Assessment Optimization  Real-time system Modeling and Analysis of Real-Time and Embedded systems (MARTE) 

References

  1. 1.
    AUTOSAR (2003) AUTOSAR: AUtomotive Open System Architecture. AUTOSAR Consortium, http://www.autosar.org/
  2. 2.
    Becker S, Koziolek H, Reussner R (2007) Model-based performance prediction with the palladio component model. In: Proceedings of the 6th international workshop on software and performance (WOSP) 2007, ACM, pp 54–65. doi:10.1145/1216993.1217006
  3. 3.
    Bertolino A, Mirandola R (2004) CB-SPE tool: putting component-based performance engineering into practice. In: Crnkovic I, Stafford JA, Schmidt HW, Wallnau K (eds) Component-based software engineering, vol 3054, Springer, Berlin and Heidelberg, Germany, pp 233–248. doi:10.1007/978-3-540-24774-6_21
  4. 4.
    Bondarev E, Chaudron M, de With P (2006) A process for resolving performance trade-offs in component-based architectures. In: Gorton I, Heineman GT, Crnković I, Schmidt HW, Stafford JA, Szyperski C, Wallnau K (eds) Component-based software engineering—9th international symposium, CBSE 2006, Västerås, Sweden, Lect Notes Comput Sci, vol 4063, Springer, Berlin, Germany, pp 254–269. doi:10.1007/11783565_18
  5. 5.
    Bondarev E, Chaudron M, de With P (2007) CARAT: a toolkit for design and performance analysis of component-based embedded systems. In: Proceedings of the design, automation test in Europe conference exhibition (DATE) 2007, pp 1–6. doi:10.1109/DATE.2007.364428
  6. 6.
    Cortellessa V, Pierini P, Rossi D (2007) Integrating software models and platform models for performance analysis. IEEE Trans Softw Eng 33(6):385–401. doi:10.1109/TSE.2007.1014 CrossRefGoogle Scholar
  7. 7.
    Cuesta C (2010) JsimMAST: The performance analysis simulator for real-time. http://mast.unican.es/jsimmast/
  8. 8.
    Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003) Taming heterogeneity—the Ptolemy approach. Proc IEEE 91(1):127–144. doi:10.1109/JPROC.2002.805829 CrossRefGoogle Scholar
  9. 9.
    Garage W (2007) ROS: the robot operating system. Open Source Robotics Foundation. http://www.ros.org/wiki/
  10. 10.
    Gonzalez Harbour M, Gutierrez Garcia J, Palencia Gutierrez J, Drake Moyano J (2001) MAST: modeling and analysis suite for real time applications. In: Proceedings of the 13th Euromicro conference on real-time systems 2001, pp 125–134. doi:10.1109/EMRTS.2001.934015
  11. 11.
    Graf S, Ober I, Ober I (2006) A real-time profile for UML. Int J Softw Tools Technol Transf 8(2):113–127. doi:10.1007/s10009-005-0213-x CrossRefGoogle Scholar
  12. 12.
    Grassi V, Mirandola R, Sabetta A (2005) From design to analysis models: a kernel language for performance and reliability analysis of component-based systems. In: Proceedings of the 5th international workshop on software and performance (WOSP) 2005, ACM, New York, NY, USA, pp 25–36.doi:10.1145/1071021.1071024
  13. 13.
    Hissam S, Moreno G, Stafford J, Wallnau K (2003) Enabling predictable assembly. J Syst Softw 65(3):185–198. doi:10.1016/S0164-1212(02)00038-9 component-Based Software EngineeringCrossRefGoogle Scholar
  14. 14.
    IBM (2003) Rationale rose: a modeling environment. IBM. http://www-01.ibm.com/software/rational/
  15. 15.
    ITEA (2000) ROBOCOP: robust open component based software architecture for configurable devices project. ITEA. http://www.hitech-projects.com/euprojects/robocop/
  16. 16.
    Klobedanz K, Kuznik C, Thuy A, Mueller W (2010) Timing modeling and analysis for AUTOSAR-based software development—a case study. In: Proceedings of design, automation test in Europe conference exhibition (DATE) 2010, pp 642–645. doi:10.1109/DATE.2010.5457125
  17. 17.
    Liu Y, Fekete A, Gorton I (2005) Design-level performance prediction of component-based applications. IEEE Trans Softw Eng 31(11):928–941. doi:10.1109/TSE.2005.127 CrossRefGoogle Scholar
  18. 18.
    Medina JL, Cuesta AG (2011) MAST: modeling and analysis suite for real-time applications. http://mast.unican.es
  19. 19.
    Medina JL, Garcia Cuesta A (2011) Model-based analysis and design of real-time distributed systems with Ada and the UML profile for MARTE. In: Reliable software technologies—Ada-Europe 2011, Lect Notes Comput Sci, vol 6652, Springer, Berlin and Heidelberg, Germany, pp 89–102.doi:10.1007/978-3-642-21338-0_7
  20. 20.
    Mos A, Murphy J (2002) A framework for performance monitoring, modelling and prediction of component oriented distributed systems. In: Proceedings of the 3rd international workshop on software and performance (WOSP) 2002, ACM, New York, NY, USA, pp 235–36. doi:10.1145/584369.584403
  21. 21.
    Määttä S, Indrusiak LS, Ost L, Möller L, Glesner M, Moraes FG, Nurmi J (2010) Model based approach for heterogeneous application modelling for real time embedded systems. In: Proceedings of the third international workshop on model based architecting and construction of embedded systems (ACES-MB 2010), held as part of the 2010 international conference on model driven engineering languages and systems (MoDELS’10), Oslo, Norway. http://www.inf.pucrs.br/moraes/my_pubs/papers/2010/2010_ACESMB_moller.pdf
  22. 22.
    OMG (2007) SysML: systems modeling language. OMG. http://www.omgsysml.org/
  23. 23.
    OMG (2009) MARTE: modeling and analysis of real time and embedded systems. OMG. http://www.omgmarte.org
  24. 24.
    SAE (2000) Architecture analysis and design language. SAE. http://www.aadl.info/aadl/currentsite
  25. 25.
    Silvano C, Fornaciari W, Palermo G, Zaccaria V, Castro F, Martinez M, Bocchio S, Zafalon R, Avasare P, Vanmeerbeeck G, Ykman-Couvreur C, Wouters M, Kavka C, Onesti L, Turco A, Bondik U, Marianik G, Posadas H, Villar E, Wu C, Dongrui F, Hao Z, Shibin T (2010) MULTICUBE: multi-objective design space exploration of multi-core architectures. In: Proceedings of the 2010 IEEE Annu Symp VLSI (ISVLSI), IEEE Comput Soc, Washington, DC, USA, pp 488–493. doi:10.1109/ISVLSI.2010.67
  26. 26.
    Thompson M, Polstra S, Erbas C, Pimentel AD (2008) Calibration of abstract performance models for system-level design space exploration. J Signal Proc Syst 50(2):99–114. doi:10.1007/s11265-007-0085-2 CrossRefGoogle Scholar
  27. 27.
    Triantafyllidis K (2013) ProMARTES: profiling, modeling, analysis of real-time embedded systems. http://vca.ele.tue.nl/demos/ProMARTES
  28. 28.
    Triantafyllidis K, Bondarev E, de With P (2012) Low-level profiling and MARTE-compatible modeling of software components for real-time systems. In: Proceedings of the 38th EUROMICRO conference on software engineering and advanced applications (SEAA) 2012, pp 216–223.doi:10.1109/SEAA.2012.25
  29. 29.
    Wandeler E, Thiele L, Verhoef M, Lieverse P (2006) System architecture evaluation using modular performance analysis: a case study. Int J Softw Tools Technol Transfer 8(6):649–667. doi:10.1007/s10009-006-0019-5 CrossRefGoogle Scholar
  30. 30.
    Wu X, Woodside M (2004) Performance modeling from software components. In: Proceedings of the 4th international workshop on software and performance (WOSP) 2004, ACM, New York, NY, USA, pp 290–301. doi:10.1145/974044.974089

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Konstantinos Triantafyllidis
    • 1
  • Egor Bondarev
    • 1
  • Peter H. N. de With
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations