Model-Based Design of Real Time Embedded Application Reconfiguration

  • Mouna Ben Said
  • Yessine Hadj Kacem
  • Nader Ben Amor
  • Mickaël Kerboeuf
  • Mohamed Abid
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 311)


Maximizing the system output quality under resource constraints presents an inherent challenge in the design of RTES. To deal with this issue, scaling the application quality level through algorithmic or parameters tuning is an interesting adaptation mechanism since it permits to handle the complexity of modern embedded applications. Unfortunately, this adaptation mechanism is still under-explored by existing model-based design approaches. It is also not supported by the UML MARTE profile. Therefore, we propose in this chapter a model-based design of application reconfiguration using the MARTE standard. We define an additional package extending the Software Resource Modeling sub-profile. Then, in order to promote reusability of our proposed extension and facilitate its use by non-experts, we exploited it in the definition of a design pattern for an adaptation RTES decision making process.


Model driven engineering UML/MARTE profile MARTE extension Real-Time Embedded System (RTES) Monitor Analyze Plan Execute (MAPE) adaptation loop Fine-grain adaptation Application reconfiguration Quality level Advanced Video Coding (AVC) video encoder Design pattern Model reuse Decision making 


  1. 1.
    Andersson J, Lemos R, Malek S, Weyns D (2009) Modeling dimensions of self-adaptive software systems. In: Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (eds) Software engineering for self-adaptive systems. Springer, Berlin, pp 27–47. doi: 10.1007/978-3-642-02161-9_2 CrossRefGoogle Scholar
  2. 2.
    Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software architecture: a system of patterns. Wiley Inc, New YorkGoogle Scholar
  3. 3.
    Cherif S, Trabelsi C, Meftali S, Dekeyser JL (2011) High level design of adaptive distributed controller for partial dynamic reconfiguration in FPGA. In: Proceeding of the conference on design and architectures for signal and image processing (DASIP) 2011, pp 308–315. doi: 10.1109/DASIP.2011.6136896
  4. 4.
    Corsaro A, Schmidt DC, Klefstad R, ORyan C (2002) Virtual component—a design pattern for memory-constrained embedded applications. In: Proceedings of the conference on pattern language of programs (PLoP)2002Google Scholar
  5. 5.
    Dekeyser JL, Boulet P, Marquet P, Meftali S (2005) Model driven engineering for SoC co-design. In: Proceedings of the international IEEE-NEWCAS conference (NEWCAS) 2005, Quebec.
  6. 6.
    Diguet JP, Eustache Y, Gogniat G (2011) Closed-loop-based self-adaptive hardware/software-embedded systems: design methodology and smart cam case study. ACM Trans Embed Comput Syst 10(3):1–28. doi: 10.1145/1952522.1952531 CrossRefGoogle Scholar
  7. 7.
    Gamatié A, Le Beux S, Piel É, Etien A, Ben Atitallah R, Marquet P, Dekeyser JL (2008) A model driven design framework for high performance embedded systems. Research Report RR-6614, INRIA,
  8. 8.
    Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc, BostonGoogle Scholar
  9. 9.
    Gomaa H, Hashimoto K (2012) Dynamic self-adaptation for distributed service-oriented transactions. In: Proceeedings of the ICSE workshop on software engineering for adaptive and self-managing systems (SEAMS) 2012, pp 11–20. doi: 10.1109/SEAMS.2012.6224386
  10. 10.
    Kephart J, Chess D (2003) The vision of autonomic computing. Computer 36(1):41–50. doi: 10.1109/MC.2003.1160055 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Krichen F, Hamid B, Zalila B, Jmaiel M (2011) Towards a model-based approach for reconfigurable DRE systems. In: Proceedings of the european conference on software architecture (ECSA) 2011, pp 295–302. doi: 10.1007/978-3-642-23798-0_32
  12. 12.
    McKinley PK, Sadjadi SM, Kasten EP, Cheng BHC (2004) Composing adaptive software. Computer 37(7):56–64. doi: 10.1109/MC.2004.48 CrossRefGoogle Scholar
  13. 13.
    OMG (2011) A UML profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems, ptc/2011-06-02. Object Management Group (OMG), standardGoogle Scholar
  14. 14.
    Oreizy P, Gorlick MM, Taylor RN, Heimbigner D, Johnson G, Medvidovic N, Quilici A, Rosenblum DS, Wolf AL (1999) An architecture-based approach to self-adaptive software. IEEE Intell Syst 14(3):54–62. doi: 10.1109/5254.769885 CrossRefGoogle Scholar
  15. 15.
    Ostermann J, Bormans J, List P, Marpe D, Narroschke M, Pereira F, Stockhammer T, Wedi T (2004) Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circuits Syst Mag 4(1):7–28. doi: 10.1109/mcas.2004.1286980 CrossRefGoogle Scholar
  16. 16.
    Puviani M, Cabri G, Zambonelli F (2013) A taxonomy of architectural patterns for self-adaptive systems. In: Proceedings of the international C* conference on computer science and software engineering (C3S2E) 2013, ACM, New York, pp 77–85. doi: 10.1145/2494444.2494470
  17. 17.
    Rafiq Quadri I, Meftali S, Dekeyser JL (2009) A model based design flow for dynamic reconfigurable FPGAs. Int J Reconfigurable ComputGoogle Scholar
  18. 18.
    Ramirez AJ, Cheng BHC (2010) Design patterns for developing dynamically adaptive systems. In: Proceedings of the ICSE workshop on software engineering for adaptive and self-managing systems (SEAMS) 2010, ACM, New York, pp 49–58. doi: 10.1145/1808984.1808990
  19. 19.
    Said MB, Kacem YH, Amor NB, Abid M (2013) High level design of adaptive real-time embedded systems: A survey. In: Proceeedings of the international conference on model-driven engineering and software development (MODELSWARD) 2013, pp 341–350Google Scholar
  20. 20.
    Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and research challenges. ACM Trans Auton Adapt Syst (TAAS) 4(2):1–42. doi: 10.1145/1516533.1516538 CrossRefGoogle Scholar
  21. 21.
    Schmidt D, Stal M, Rohnert H, Buschmann F (2000) Pattern-oriented Softw Architect., Patterns for concurrent and networked objects. Vol 2 Wiley, New YorkGoogle Scholar
  22. 22.
    Schmidt DC (2006) Model-driven engineering. IEEE Computer 39(2).
  23. 23.
    Schätz B, Pretschner A, Huber F, Philipps J (2002) Model-based development of embedded systems. In: Proceedings of the advances in object-oriented information systems workshop (OOIS) 2002, Springer, pp 298–312Google Scholar
  24. 24.
    Tourapis AM, Leontaris A, Sühring K, Sullivan G (2009) H.264/14496-10 AVC Reference Software ManualGoogle Scholar
  25. 25.
    Vardhan V, Yuan W, III AFH, Adve SV, Kravets R, Nahrstedt K, Sachs DG, Jones DL (2009) GRACE-2: integrating fine-grained application adaptation with global adaptation for saving energy. Int J Embed Syst 4(2):152–169. doi: 10.1504/IJES.2009.02793 Google Scholar
  26. 26.
    Vidal J, de Lamotte F, Gogniat G, Diguet JP, Soulard P (2010) UML design for dynamically reconfigurable multiprocessor embedded systems. Proceedings of the conference on design, automation and test in Europe (DATE) 2010, European design and automation association, 3001 leuven. Belgium, pp 1195–1200Google Scholar
  27. 27.
    Vidal J, de Lamotte F, Gogniat G, Diguet JP, Guillet S (2011) Dynamic applications on reconfigurable systems: from UML model design to FPGAs implementation. In: Proceedings of the conference on design, automation and test in europe (DATE) 2011, pp 1208–1211. doi: 10.1109/DATE.2011.5763315
  28. 28.
    Weyns D, Schmerl B, Grassi V, Malek S, Mirandola R, Prehofer C, Wuttke J, Andersson J, Giese H, Goschka K (2013) Software engineering for self-adaptive systems II, lecture notes in computer science. In: Lemos R, Giese H, Müller HA, Shaw M (eds) On patterns for decentralized control in self-adaptive systems. Springer, Berlin, pp 76–107. doi: 10.1007/978-3-642-35813-5_4 Google Scholar
  29. 29.
    Wiegand T, Schwarz H, Joch A, Kossentini F, Sullivan GJ (2003) Rate-constrained coder control and comparison of video coding standards. IEEE Trans Circuits Syst Video Technol 13(7):688–703. doi: 10.1109/TCSVT.2003.815168 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mouna Ben Said
    • 1
  • Yessine Hadj Kacem
    • 1
  • Nader Ben Amor
    • 1
  • Mickaël Kerboeuf
    • 2
  • Mohamed Abid
    • 1
  1. 1.CES Laboratory, University of Sfax, ENISSfaxTunisia
  2. 2.University of Brest, MOCS Team, Lab-STICCBrestFrance

Personalised recommendations