Advertisement

Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour

  • Sander J. J. LeemansEmail author
  • Dirk Fahland
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 171)

Abstract

Given an event log describing observed behaviour, process discovery aims to find a process model that ‘best’ describes this behaviour. A large variety of process discovery algorithms has been proposed. However, no existing algorithm returns a sound model in all cases (free of deadlocks and other anomalies), handles infrequent behaviour well and finishes quickly. We present a technique able to cope with infrequent behaviour and large event logs, while ensuring soundness. The technique has been implemented in ProM and we compare the technique with existing approaches in terms of quality and performance.

Keywords

Process mining Process discovery Block-structured process models Soundness Fitness Precision Generalisation 

References

  1. 1.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Verdonk, M.: Auditing 2.0: using process mining to support tomorrow’s auditor. Computer 43(3), 90–93 (2010)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Song, M.S.: Mining social networks: uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004) Google Scholar
  5. 5.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  7. 7.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 55–64. IEEE (2011)Google Scholar
  8. 8.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Buijs, J., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  10. 10.
    Carmona, J.: Projection approaches to process mining using region-based techniques. Data Min. Knowl. Disc. 24(1), 218–246 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37, 654–676 (2012)CrossRefGoogle Scholar
  12. 12.
    van Dongen, B.F.: BPI Challenge 2011 Dataset. http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (2011)
  13. 13.
    van Dongen, B.F.: BPI Challenge 2012 Dataset. http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f (2012)
  14. 14.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    van Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and performance visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013) Google Scholar
  17. 17.
    Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare–a case study in a Dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)CrossRefGoogle Scholar
  19. 19.
    Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on synthesis from well-structured behavioral profiles. Int. J. Coop. Inf. Syst. 21(01), 55–83 (2012)CrossRefGoogle Scholar
  20. 20.
    Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report WP 166 (2006)Google Scholar
  21. 21.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundamenta Informaticae 94, 387–412 (2010)Google Scholar
  22. 22.
    Yzquierdo-Herrera, R., Silverio-Castro, R., Lazo-Cortés, M.: Sub-process discovery: opportunities for process diagnostics. In: Poels, G. (ed.) CONFENIS 2012. LNBIP, vol. 139, pp. 48–57. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
    Email author
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhoventhe Netherlands

Personalised recommendations