Advertisement

Urban Congestion: Arrangement Aamriw Intersection in Bejaia’s City

  • N. Guerrouahane
  • S. Bouzouzou
  • L. Bouallouche-Medjkoune
  • D. Aissani
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 171)

Abstract

This study analyzes the traffic characteristics and management within Bejaia metropolis (Algeria). Large scale spatial and temporal land-use data were used to investigate the dynamics of land-use change in this area. In this paper, we considered the case of the intersection of Aamriw (Bejaia’s city), using discrete event simulation. This allowed us to calculate the main performance of the system with traffic lights and with the construction of a hopper. We present simulation results that show the validity of the queueing models in the computation of average travel times. These results allowed us to make a comparison between different versions, with traffic lights or with hopper.

Keywords

Modeling and verification of processes in logistics-based systems Urban congestion Intersection Traffic lights Queueing Theory 

Notes

Acknowledgments

The authors wish to thank the anonymous reviewers whose constructive suggestions helped improve the paper. The authors are especially thankful to Public Works Management of the town of Bejaia for providing accessibility to their vehicle data at the study intersection.

References

  1. 1.
    Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B 28(4), 269–287 (1994)CrossRefGoogle Scholar
  2. 2.
    Data on the road traffic on the level of the intersection of Aamriw, Public Works Management of the town of Bejaia (2010)Google Scholar
  3. 3.
    Demoor, B., Deschutter, B.: Optimal traffic light control for a single intersection. Eur. J. Control 4(3), 260–276 (1998)CrossRefGoogle Scholar
  4. 4.
    Elmoudni, R., Ahadar, Y.: R. Laboratoire SeT-Université de Technologie Belfort-Montbéliard UTBM, Bouyekh. Minimisation des files d’attente d’une intersection isolée (2003)Google Scholar
  5. 5.
    Heidemann, D.: Queueing at unsignalized intersections. Transp. Res. Part B 31(3), 239–263 (1997)CrossRefGoogle Scholar
  6. 6.
    Heidemann, D.: A queueing theory model of nonstationary traffic flow. Transp. Sci. 35(4), 405–412 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lehoczky, P.: Traffic intersection control and zero-switch queues. J. Appl. Probab. 9(2), 382–395 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Morris, R.W., Darroch, J.N., Newell, G.F.: Queues for vehicle-actuated traffic light. Oper. Res. 12(6), 882–895 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Neuts, M.F.: Modeling vehicular traffic using the discrete time Markovian arrival process. Transp. Sci. 29(2), 109–117 (1999)MathSciNetGoogle Scholar
  10. 10.
    Pandian, S., Gokhale, S., Ghoshal, A.K.: Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections. Transp. Res. Part D 14(3), 180–196 (2009)CrossRefGoogle Scholar
  11. 11.
    Raheja, T.: Modelling traffic congestion using queuing networks. Indian Acad. Sci. Part 4 35, 427–431 (2010)Google Scholar
  12. 12.
    Smith, J.M., Cheah, J.Y.: Generalized M/G/C/C state dependent queuing models and pedestrian traffic flows. Queueing Syst. 15, 365–385 (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Smith, J.M., Jain, R.: Modeling vehicular traffic flow using M/G/C/C state dependent queueing models. Transp. Sci. 31(4), 324–336 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Tanner, J.C.: A problem of interface between two queues. Biometrica 40, 58–69 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Van Woensel, T., Kerbache, L., Peremans, H., Vandaele, N.: Vehicle routing with dynamic travel times: a queueing approach. Eur. J. Oper. Res. 186(3), 990–1007 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Verbruggen, N., Vandaele, N., Van Woensel, T.: A queueing based traffic flow model. Transp. Environ. Transp. Res. Part D 5(2), 121–135 (2000)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Rudy, K., Li, J., Ni, D.: Calculation of traffic flow breakdown probability to optimize link throughput. Appl. Math. Model. 34, 3376–3389 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wua, X., Liu, H.X.: A shockwave profile model for traffic flow on congested urban arterials. Transp. Res. Part B 45, 1768–1786 (2011)CrossRefGoogle Scholar
  19. 19.
    Olaleye, O.T., et al.: A Markov chain approach to the dynamics of vehicular traffic characteristics in Abeokuta metropolis. Res. J. Appl. Sci. Eng. Technol. 1(3), 160–166 (2009)Google Scholar
  20. 20.
    Yonggang, L., Kyungyong, L.: Modeling Signalized Intersection Using Queueing Theory (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. Guerrouahane
    • 1
  • S. Bouzouzou
    • 1
  • L. Bouallouche-Medjkoune
    • 1
  • D. Aissani
    • 1
  1. 1.Laboratory of Modeling and Optimization of Systems (LAMOS) Department of Operational ResearchUniversity of BejaiaBejaiaAlgeria

Personalised recommendations