Advertisement

Monitoring of Business Processes with Complex Event Processing

  • Susanne Bülow
  • Michael Backmann
  • Nico HerzbergEmail author
  • Thomas Hille
  • Andreas Meyer
  • Benjamin Ulm
  • Tsun Yin Wong
  • Mathias Weske
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 171)

Abstract

Business process monitoring enables a fast and specific overview of the process executions in an enterprise. Traditionally, this kind of monitoring requires a coherent event log. Yet, in reality, execution information is often heterogeneous and distributed. In this paper, we present an approach that enables monitoring of business processes with execution data, independently of the structure and source of the event information. We achieve this by implementing an open source event processing platform combining existing techniques from complex event processing and business process management. Event processing includes transformation for abstraction as well as correlation to process instances and BPMN elements. Monitoring rules are automatically created from BPMN models and executed by the platform.

Keywords

Business process intelligence Complex event processing BPMN Event transformation Event correlation 

References

  1. 1.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer, Berlin (2012)CrossRefGoogle Scholar
  2. 2.
    Herzberg, N., Weske, M.: Enriching raw events to enable process intelligence research challenges. Technical Report 73, Hasso Plattner Institute at the University of Potsdam (2013)Google Scholar
  3. 3.
    Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards process evaluation in non-automated process execution environments. In: ZEUS, CEUR-WS, pp. 97–103 (2012)Google Scholar
  4. 4.
    OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)Google Scholar
  5. 5.
    Bernhardt, T., Vasseur, A.: Esper: event stream processing and correlation. http://onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html, March 2007
  6. 6.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co, Stamford (2010)Google Scholar
  7. 7.
    Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering event correlation rules for semi-structured business processes. In: Distributed event-based system, pp. 75–86. ACM (2011)Google Scholar
  8. 8.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009)CrossRefGoogle Scholar
  9. 9.
    Mutschler, B., Reichert, M.: Aktuelles Schlagwort: business process intelligence. EMISA Forum 26(1), 27–31 (2006)Google Scholar
  10. 10.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)CrossRefGoogle Scholar
  11. 11.
    Azvine, B., Cui, Z., Nauck, D., Majeed, B.: Real time business intelligence for the adaptive enterprise. In: CEC/EEE, p. 29. IEEE (2006)Google Scholar
  12. 12.
    Melchert, F., Winter, R., Klesse, M.: Aligning process automation and business intelligence to support corporate performance management. In: AMCIS, Association for Information Systems, pp. 4053–4063 (2004)Google Scholar
  13. 13.
    van der Aalst, W.M.P.: Process mining: overview and opportunities. ACM Trans. Manage. Inf. Syst. 3(2), 7:1–7:17 (2012)Google Scholar
  14. 14.
    van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the understanding of BAM technology for real-time decision support. Int. J. Bus. Inf. Syst. 7(1), 1–26 (2011)Google Scholar
  16. 16.
    del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining process performance indicators: an ontological approach. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg (2010) Google Scholar
  17. 17.
    Rodríguez, C., Engel, R., Kostoska, G., Daniel, F., Casati, F., Aimar, M.: Eventifier: Extracting process execution logs from operational databases. In: Demonstration Track of BPM Conference, CEUR-WS, pp. 17–22 (2012)Google Scholar
  18. 18.
    Baouab, A., Perrin, O., Godart, C.: An optimized derivation of event queries to monitor choreography violations. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) CSOC 2012. LNCS, vol. 7636, pp. 222–236. Springer, Heidelberg (2012)Google Scholar
  19. 19.
    Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011) Google Scholar
  20. 20.
    Luckham, D., Schulte, R.: Event processing glossary. http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/ (2011)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Susanne Bülow
    • 1
  • Michael Backmann
    • 1
  • Nico Herzberg
    • 1
    Email author
  • Thomas Hille
    • 1
  • Andreas Meyer
    • 1
  • Benjamin Ulm
    • 1
  • Tsun Yin Wong
    • 1
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations