Verifying Nonpolynomial Hybrid Systems by Qualitative Abstraction and Automated Theorem Proving

  • William Denman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8430)

Abstract

Few methods can automatically verify nonlinear hybrid systems that are modelled by nonpolynomial functions. Qualitative abstraction is a potential alternative to numerical reachability methods for formally verifying these systems. The QUANTUM abstracter is shown to be competitive at verifying several benchmark nonpolynomial hybrid systems.

Keywords

Sine Drone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frehse, G., et al.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE for hybrid systems analysis by combining different enclosure methods. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Hybrid Systems: Computation and Control, pp. 11–20. ACM (2010)Google Scholar
  6. 6.
    Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44, 175–205 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Denman, W.: QUANTUM: Qualitative abstractions of non-polynomial models. In: Qualitative Reasoning (August 2013)Google Scholar
  9. 9.
    Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems. Int. J. Softw. Tools Technol. Transf. 13(5), 449–461 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • William Denman
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations