Advertisement

A Pseudo-Random Bit Generator Based on Three Chaotic Logistic Maps and IEEE 754-2008 Floating-Point Arithmetic

  • Michael François
  • David Defour
  • Pascal Berthomé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8402)

Abstract

A novel pseudo-random bit generator (PRBG), combining three chaotic logistic maps is proposed. The IEEE 754-2008 standard for floating-point arithmetic is adopted and the binary64 double precision format is used. A more efficient processing is applied to better extract the bits, from outputs of the logistic maps. The algorithm enables to generate at each iteration, a block of 32 random bits by starting from three chosen seed values. The performance of the generator is evaluated through various statistical analyzes. The results show that the output sequences possess high randomness statistical properties for a good security level. The proposed generator lets appear significant cryptographic qualities.

Keywords

PRBG Pseudo-random Logistic map Chaotic map IEEE 754-2008 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, F., Liu, S.: Cryptographic pseudo-random sequence from the spatial chaotic map. Chaos Solit. Fract. 41(5), 2216–2219 (2009)CrossRefGoogle Scholar
  2. 2.
    Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number generator. Statistische Hefte 27(1), 315–326 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Rose, G.: A stream cipher based on linear feedback over GF(28). In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 135–146. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2), 364–383 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Tomassini, M., Sipper, M., Zolla, M., Perrenoud, M.: Generating high-quality random numbers in parallel by cellular automata. Future Gener. Comput. Syst. 16(2), 291–305 (1999)CrossRefGoogle Scholar
  7. 7.
    Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guyeux, C., Wang, Q., Bahi, J.M.: A pseudo random numbers generator based on chaotic iterations: Application to watermarking. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) Web Information Systems and Mining. LNCS, vol. 6318, pp. 202–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Zheng, F., Tian, X., Song, J., Li, X.: Pseudo-random sequence generator based on the generalized Henon map. J. China Univ. Posts Telecommun. 15(3), 64–68 (2008)CrossRefGoogle Scholar
  10. 10.
    Pareschi, F., Setti, G., Rovatti, R.: A fast chaos-based true random number generator for cryptographic applications. In: Proceedings of the 32nd European Solid-State Circuits Conference, ESSCIRC 2006, pp. 130–133. IEEE (2006)Google Scholar
  11. 11.
    Pareek, N., Patidar, V., Sud, K.: A random bit generator using chaotic maps. Int. J. Netw. Secur. 10(1), 32–38 (2010)Google Scholar
  12. 12.
    Patidar, V., Sud, K., Pareek, N.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica (Slovenia) 33(4), 441–452 (2009)zbMATHMathSciNetGoogle Scholar
  13. 13.
    López, A.B.O., Marañon, G.Á., Estévez, A.G., Dégano, G.P., García, M.R., Vitini, F.M.: Trident, a new pseudo random number generator based on coupled chaotic maps. In: Herrero, Á., Corchado, E., Redondo, C., Alonso, Á. (eds.) Computational Intelligence in Security for Information Systems 2010. AISC, vol. 85, pp. 183–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    François, M., Grosges, T., Barchiesi, D., Erra, R.: A new pseudo-random number generator based on two chaotic maps. Informatica 24(2), 181–197 (2013)MathSciNetGoogle Scholar
  15. 15.
    754-2008 IEEE standard for floating-point arithmetic. IEEE Computer Society Std (August 2008)Google Scholar
  16. 16.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)CrossRefGoogle Scholar
  17. 17.
    Bose, R., Banerjee, A.: Implementing symmetric cryptography using chaos functions. In: Proc. 7th Int. Conf. Advanced Computing and Communications, pp. 318–321. Citeseer (1999)Google Scholar
  18. 18.
    Weisstein, E.: Logistic map (2013), http://mathworld.wolfram.com/LogisticMap.html
  19. 19.
    Baptista, M.: Cryptography with chaos. Phys. Lett. A 240(1), 50–54 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Cecen, S., Demirer, R., Bayrak, C.: A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps. Chaos Solit. Fract. 42(2), 847–853 (2009)CrossRefGoogle Scholar
  21. 21.
    Xuan, L., Zhang, G., Liao, Y.: Chaos-based true random number generator using image. In: 2011 International Conference on Computer Science and Service System (CSSS), pp. 2145–2147. IEEE (2011)Google Scholar
  22. 22.
    François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 19(4), 887–895 (2014)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Pareek, N., Patidar, V., Sud, K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)CrossRefGoogle Scholar
  24. 24.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, NIST Special Publication Revision 1a (2010)Google Scholar
  25. 25.
    Patidar, V., Pareek, N., Purohit, G., Sud, K.: A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption. Opt. Commun. 284(19), 4331–4339 (2011)CrossRefGoogle Scholar
  26. 26.
    Kendall, M.: Rank correlation methods, 4th edn. Griffin, London (1970)zbMATHGoogle Scholar
  27. 27.
    L’ecuyer, P., Simard, R.: Testu01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22–es (2007)Google Scholar
  28. 28.
    Marsaglia, G.: Diehard: a battery of tests of randomness (1996), http://stat.fsu.edu/geo/diehard.html
  29. 29.
    The GNU MPFR library, http://www.mpfr.org
  30. 30.
    Keller, J., Wiese, H.: Period lengths of chaotic pseudo-random number generators. In: Proceedings of the Fourth IASTED International Conference on Communication, Network and Information Security, CNIS 2007, pp. 7–11 (2007)Google Scholar
  31. 31.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  32. 32.
    Ahmadi, H., Eghlidos, T.: Heuristic guess-and-determine attacks on stream ciphers. Inf. Secur. IET 3(2), 66–73 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael François
    • 1
  • David Defour
    • 2
  • Pascal Berthomé
    • 1
  1. 1.INSA Centre Val de LoireUniv. Orléans, LIFOBourgesFrance
  2. 2.Univ. Perpignan Via Domitia, DALI F-66860, LIRMM UMR 5506PerpignanFrance

Personalised recommendations