Oxidative Stress and Antibiotic Resistance in Bacterial Pathogens: State of the Art, Methodologies, and Future Trends

  • Mouna MarrakchiEmail author
  • Xiaobo Liu
  • Silvana Andreescu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 806)


Despite the significant advances of modern medicine and the availability of a wide variety of antibiotics for the treatment of microbial infections, there is an alarming increase of multiresistant bacterial pathogens. This chapter discusses the status of bacterial resistance mechanisms and the relationship with oxidative stress and provides an overview of the methods used to assess oxidative conditions and their contribution to the antibiotic resistance.


Oxidative Stress Antibiotic Resistance Oxidative Stress Response Bacillus Anthracis Oxolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Mouna Marrakchi is grateful to the Fulbright Foundation for the research fellowship as visiting professor in Clarkson University from September 2013 to June 2014. This material is based upon work supported by the National Science Foundation under Grant Nos. 0954919 and 1336493. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Peeling RW, Smith PG, Bossuyt PMM (2006) A guide for diagnostic evaluations. Nat Rev Microbiol 4(12 Suppl):S2–S6CrossRefGoogle Scholar
  2. 2.
    Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ 79(8):780–790Google Scholar
  3. 3.
    Dwyer DJ et al (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3:91CrossRefGoogle Scholar
  4. 4.
    Wright GD (2007) On the road to bacterial cell death. Cell 130(5):781–783CrossRefGoogle Scholar
  5. 5.
    Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797):775–781CrossRefGoogle Scholar
  6. 6.
    Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435CrossRefGoogle Scholar
  7. 7.
    Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413CrossRefGoogle Scholar
  8. 8.
    Kohanski MA et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810CrossRefGoogle Scholar
  9. 9.
    Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264(5157):375–382CrossRefGoogle Scholar
  10. 10.
    Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12):S122–S129CrossRefGoogle Scholar
  11. 11.
    Jacoby GA, Archer GL (1991) New mechanisms of bacterial resistance to antimicrobial agents. N Engl J Med 324(9):601–612CrossRefGoogle Scholar
  12. 12.
    Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5(3):175–186CrossRefGoogle Scholar
  13. 13.
    Dwyer DJ, Kohanski MA, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12(5):482–489CrossRefGoogle Scholar
  14. 14.
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304CrossRefGoogle Scholar
  15. 15.
    Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265CrossRefGoogle Scholar
  16. 16.
    Allen HK et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259CrossRefGoogle Scholar
  17. 17.
    Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3(9):711–721CrossRefGoogle Scholar
  18. 18.
    Lee HH et al (2010) Bacterial charity work leads to population-wide resistance. Nature 467(7311):82–85CrossRefGoogle Scholar
  19. 19.
    D’Costa VM et al (2006) Sampling the antibiotic resistome. Science 311(5759):374–377CrossRefGoogle Scholar
  20. 20.
    Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3(14):2574–2582Google Scholar
  21. 21.
    Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454CrossRefGoogle Scholar
  22. 22.
    Yeom J, Imlay JA, Park W (2010) Iron homeostasis affects antibiotic-mediated cell death in pseudomonas species. J Biol Chem 285(29):22689–22695CrossRefGoogle Scholar
  23. 23.
    Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724CrossRefGoogle Scholar
  24. 24.
    Xia T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRefGoogle Scholar
  25. 25.
    Kalyanaraman B et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6CrossRefGoogle Scholar
  26. 26.
    Murrant CL, Reid MB (2001) Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 55(4):236–248CrossRefGoogle Scholar
  27. 27.
    Murphy MP et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361–366CrossRefGoogle Scholar
  28. 28.
    Villamena FA, Zweier JL (2004) Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid Redox Signal 6(3):619–629CrossRefGoogle Scholar
  29. 29.
    White JR, Dearman HH (1965) Generation of free radicals from phenazine methosulfate, streptonigrin, and riboflavin in bacterial suspensions. Proc Natl Acad Sci U S A 54(3): 887–891CrossRefGoogle Scholar
  30. 30.
    Borgmann S (2009) Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem 394(1):95–105CrossRefGoogle Scholar
  31. 31.
    Amatore C et al (2006) Monitoring in real time with a microelectrode the release of reactive oxygen and nitrogen species by a single macrophage stimulated by its membrane mechanical depolarization. Chembiochem 7(4):653–661CrossRefGoogle Scholar
  32. 32.
    Amatore C et al (2008) Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages. Chembiochem 9(9):1472–1480CrossRefGoogle Scholar
  33. 33.
    Amatore C, Arbault S, Koh AC (2010) Simultaneous detection of reactive oxygen and nitrogen species released by a single macrophage by triple potential-step chronoamperometry. Anal Chem 82(4):1411–1419CrossRefGoogle Scholar
  34. 34.
    Amatore C et al (2008) Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev 108(7):2585–2621CrossRefGoogle Scholar
  35. 35.
    Ganesana M, Erlichman JS, Andreescu S (2012) Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic Biol Med 53(12):2240–2249CrossRefGoogle Scholar
  36. 36.
    Njagi J et al (2010) A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices. Sens Actuators B Chem 143(2):673–680CrossRefGoogle Scholar
  37. 37.
    Karasinski J et al (2005) Multiarray sensors with pattern recognition for the detection, classification, and differentiation of bacteria at subspecies and strain levels. Anal Chem 77(24): 7941–7949CrossRefGoogle Scholar
  38. 38.
    Karasinski J et al (2007) Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. Biosens Bioelectron 22(11):2643–2649CrossRefGoogle Scholar
  39. 39.
    Albesa I et al (2004) Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun 317(2):605–609CrossRefGoogle Scholar
  40. 40.
    Grant SS et al (2012) Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci 109(30):12147–12152CrossRefGoogle Scholar
  41. 41.
    Goswami M, Mangoli SH, Jawali N (2006) Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother 50(3):949–954CrossRefGoogle Scholar
  42. 42.
    Wang X et al (2010) Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother 65(3):520–524CrossRefGoogle Scholar
  43. 43.
    Mead J, Pryor W (1976) Free radicals in biology. Academic, New York, pp 51–68CrossRefGoogle Scholar
  44. 44.
    Brot N et al (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A 78(4):2155CrossRefGoogle Scholar
  45. 45.
    Demple B, Linn S (1982) 5,6-Saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. Nucleic Acids Res 10(12):3781–3789CrossRefGoogle Scholar
  46. 46.
    Levin DE et al (1982) A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci 79(23):7445–7449CrossRefGoogle Scholar
  47. 47.
    Sokolowska I et al (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. Oxidative Stress: Diagnostics, Prevention, and Therapy 1083:369–411Google Scholar
  48. 48.
    James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331CrossRefGoogle Scholar
  49. 49.
    Solis N, Cordwell SJ (2011) Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 11(15):3169–3189CrossRefGoogle Scholar
  50. 50.
    de Arruda Grossklaus D et al (2013) Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 15(5):347–364CrossRefGoogle Scholar
  51. 51.
    Dosselli R et al (2012) Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 77:329–343CrossRefGoogle Scholar
  52. 52.
    Silva VL et al (2010) Use of 2-D electrophoresis and ESI mass spectrometry techniques to characterize Fusobacterium nucleatum proteins up-regulated after oxidative stress. Anaerobe 16(2):179–182CrossRefGoogle Scholar
  53. 53.
    Huang C-H, Chiou S-H (2011) Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J Med Sci 27(12): 544–553CrossRefGoogle Scholar
  54. 54.
    Kim SH et al (2013) Proteomic analysis of the oxidative stress response induced by low-dose hydrogen peroxide in Bacillus anthracis. J Microbiol Biotechnol 23(6):750–758CrossRefGoogle Scholar
  55. 55.
    Shu J-C et al (2013) Differential regulation and activity against oxidative stress of Dps proteins in Bacillus cereus. Int J Med Microbiol 303(8):662–673CrossRefGoogle Scholar
  56. 56.
    Sardar AH et al (2013) Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteomics 81:185–199CrossRefGoogle Scholar
  57. 57.
    Deng X et al (2013) Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe 13(3):358–370CrossRefGoogle Scholar
  58. 58.
    Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279(5353):996–997CrossRefGoogle Scholar
  59. 59.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250CrossRefGoogle Scholar
  60. 60.
    Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557CrossRefGoogle Scholar
  61. 61.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395CrossRefGoogle Scholar
  62. 62.
    Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond B 93:306–317CrossRefGoogle Scholar
  63. 63.
    Moritz M, Geszke-Moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613CrossRefGoogle Scholar
  64. 64.
    Amato E et al (2011) Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles. Langmuir 27(15):9165–9173CrossRefGoogle Scholar
  65. 65.
    Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608CrossRefGoogle Scholar
  66. 66.
    Bandyopadhyay S et al (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241–242:379–386CrossRefGoogle Scholar
  67. 67.
    El Badawy AM et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287CrossRefGoogle Scholar
  68. 68.
    Heinlaan M et al (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316CrossRefGoogle Scholar
  69. 69.
    Kumar A et al (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83(8):1124–1132CrossRefGoogle Scholar
  70. 70.
    Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45(5):1977–1983CrossRefGoogle Scholar
  71. 71.
    Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7): 4020–4028CrossRefGoogle Scholar
  72. 72.
    Thill A et al (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156CrossRefGoogle Scholar
  73. 73.
    Tong TZ et al (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47(7):2352–2362CrossRefGoogle Scholar
  74. 74.
    Kvitek L et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834CrossRefGoogle Scholar
  75. 75.
    Mohanty S et al (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8(6):916–924CrossRefGoogle Scholar
  76. 76.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRefGoogle Scholar
  77. 77.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  78. 78.
    Friedman A et al (2011) Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2(3):217–221CrossRefGoogle Scholar
  79. 79.
    Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145CrossRefGoogle Scholar
  80. 80.
    Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815CrossRefGoogle Scholar
  81. 81.
    Aruguete DM et al (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts 15(1):93–102CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mouna Marrakchi
    • 1
    • 2
    Email author
  • Xiaobo Liu
    • 1
  • Silvana Andreescu
    • 1
  1. 1.Department of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamUSA
  2. 2.Laboratoire d’Ecologie et de Technologie MicrobienneCarthage UniversityCharguia CedexTunisia

Personalised recommendations