Advertisement

On Shape Deformation Techniques for Simulation-Based Design Optimization

  • Daniel SiegerEmail author
  • Stefan Menzel
  • Mario Botsch
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 5)

Abstract

We present an in-depth analysis and benchmark of shape deformation techniques for their use in simulation-based design optimization scenarios. We first introduce classical free-form deformation, its direct manipulation variant, as well as deformations based on radial basis functions. We compare the techniques in a series of representative synthetic benchmarks, including computational performance, numerical robustness, quality of the deformation, adaptive refinement, as well as precision of constraint satisfaction. As an application-oriented benchmark we investigate the ability to adapt an existing volumetric simulation mesh according to an updated surface geometry, including unstructured tetrahedral, structured hexahedral, and arbitrary polyhedral example meshes. Finally, we provide a detailed assessment of the methods and give concrete advice on choosing a suitable technique for a given optimization scenario.

Keywords

Radial Basis Function Direct Manipulation Deformation Function Space Deformation Deformation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Daniel Sieger gratefully acknowledges the financial support from Honda Research Institute Europe (HRI-EU). Mario Botsch is supported by the German National Research Foundation (DFG CoE 277: CITEC). The authors kindly thank Matthew Staten from Sandia National Laboratories for originally providing us with Pipe models from [38].

References

  1. 1.
    Bechmann, D.: Space deformation models survey. Comput. Graph. 18(4), 571–586 (1994)CrossRefGoogle Scholar
  2. 2.
    de Boer, A., van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85, 784–795 (2007)CrossRefGoogle Scholar
  3. 3.
    Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput. Graph. Forum (Proc. Eurograph.) 24(3), 611–621 (2005)Google Scholar
  4. 4.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  5. 5.
    Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters, Natick (2010)Google Scholar
  6. 6.
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. In: Proceedings of ACM SIGGRAPH, pp. 187–196 (1990)Google Scholar
  7. 7.
    Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing, Singapore (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27, 107:1–107:21 (2008)Google Scholar
  9. 9.
    Giannelli, C., Jüttler, B., Speleers, H.: THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)zbMATHGoogle Scholar
  11. 11.
    Griessmair, J., Purgathofer, W.: Deformation of solids with trivariate B-splines. In: Proceedings of Eurographics (1989)Google Scholar
  12. 12.
    Heft, A.I., Indinger, T., Adams, N.A.: Introduction of a new realistic generic car model for aerodynamic investigations. In: SAE 2012 World Congress (2012)Google Scholar
  13. 13.
    Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In: Proceedings of ACM SIGGRAPH, pp. 177–184 (1992)Google Scholar
  14. 14.
    Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 78:1–78:8 (2011)Google Scholar
  15. 15.
    Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput. Fluids 36(6), 1119–1136 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lamousin, H., Waggenspack, N.: NURBS-based free-form deformations. IEEE Comput. Graph. Appl. 14(6), 59–65 (1994)CrossRefGoogle Scholar
  17. 17.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proceedings of ACM SIGGRAPH, pp. 181–188 (1996)Google Scholar
  18. 18.
    Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Meth. Fluids 70, 646–670 (2011)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Menzel, S., Sendhoff, B.: Representing the change-free form deformation for evolutionary design optimization. Stud. Comput. Intell. 88, 63–86 (2008)CrossRefGoogle Scholar
  20. 20.
    Menzel, S., Olhofer, M., Sendhoff, B.: Application of free form deformation techniques in evolutionary design optimisation. In: Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization (2005)Google Scholar
  21. 21.
    Menzel, S., Olhofer, M., Sendhoff, B.: Direct manipulation of free form deformation in evolutionary design optimisation. In: International Conference on Parallel Problem Solving from Nature (PPSN), pp. 352–361 (2006)Google Scholar
  22. 22.
    Michler, A.K.: Aircraft control surface deflection using RBF-based mesh deformation. Int. J. Numer. Meth. Eng. 88(10), 986–1007 (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    Moccozet, L., Thalmann, N.: Dirichlet free-form deformations and their application to hand simulation. In: Computer Animation ’97, pp. 93–102 (1997)Google Scholar
  24. 24.
    OpenFOAM: Open source field operation and manipulation C++ libraries. http://www.openfoam.org (2012)
  25. 25.
    OpenMP Architecture Review Board: OpenMP application program interface version 3.1. URL http://www.openmp.org/mp-documents/OpenMP3.1.pdf (2011)
  26. 26.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  27. 27.
    Samareh, J.A.: A survey of shape parameterization techniques. Technical Report NASA/CP-1999-209136/PT1, NASA Langley Research Center (1999)Google Scholar
  28. 28.
    Samareh, J.A.: Aerodynamic shape optimization based on free-form deformation. In: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004)Google Scholar
  29. 29.
    Sapidis, N.S.: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design. Society for Industrial and Applied Mathematics, Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of ACM SIGGRAPH, pp. 151–159 (1986)Google Scholar
  32. 32.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)CrossRefGoogle Scholar
  33. 33.
    Sibson, R.: A vector identity for the dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87, 151–155 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Sieger, D., Menzel, S., Botsch, M.: A comprehensive comparison of shape deformations in evolutionary design optimization. In: Proceedings of the 3rd International Conference on Engineering Optimization (2012)Google Scholar
  35. 35.
    Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using triharmonic radial basis functions. In: Proceedings of the 21st International Meshing Roundtable (2012)Google Scholar
  36. 36.
    Sieger, D., Menzel, S., Botsch, M.: RBF morphing techniques for simulation-based design optimization. Eng. Comput. 30(2), 161–174 (2014)CrossRefGoogle Scholar
  37. 37.
    Song, W., Yang, X.: Free-form deformation with weighted T-spline. Vis. Comput. 21, 139–151 (2005)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing methods for 3D shape optimization. In: Proceedings of the 20th International Meshing Roundtable, pp. 293–311 (2011)Google Scholar
  39. 39.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Bielefeld UniversityBielefeldGermany
  2. 2.Honda Research Institute Europe GmbHOffenbach/MainGermany

Personalised recommendations