Bibliometric-Enhanced Information Retrieval

  • Philipp Mayr
  • Andrea Scharnhorst
  • Birger Larsen
  • Philipp Schaer
  • Peter Mutschke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)

Abstract

Bibliometric techniques are not yet widely used to enhance retrieval processes in digital libraries, although they offer value-added effects for users. In this workshop we will explore how statistical modelling of scholarship, such as Bradfordizing or network analysis of coauthorship network, can improve retrieval services for specific communities, as well as for large, cross-domain collections. This workshop aims to raise awareness of the missing link between information retrieval (IR) and bibliometrics / scientometrics and to create a common ground for the incorporation of bibliometric-enhanced services into retrieval at the digital library interface.

Keywords

Bibliometrics Informetrics Scientometrics Information Retrieval Digital Libraries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements that don’t add up: ad-hoc retrieval results since 1998. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 601–610. ACM, Hong Kong (2009), doi:10.1145/1645953.1646031Google Scholar
  2. 2.
    Börner, K., Glänzel, W., Scharnhorst, A., van den Besselaar, P.: Modeling science: Studying the structure and dynamics of science. Scientometrics 89, 347–348 (2011)CrossRefGoogle Scholar
  3. 3.
    Lykke, M., Larsen, B., Lund, H., Ingwersen, P.: Developing a Test Collection for the Evaluation of Integrated Search. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 627–630. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Mutschke, P., Mayr, P., Schaer, P., Sure, Y.: Science models as value-added services for scholarly information systems. Scientometrics 89(1), 349–364 (2011), doi:10.1007/s11192-011-0430-xCrossRefGoogle Scholar
  5. 5.
    Ritchie, A., Teufel, S., Robertson, S.: Creating a Test Collection for Citation-based IR Experiments. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, HLT-NAACL 2006, pp. 391–398. Association for Computational Linguistics, Stroudsburg (2006), doi:10.3115/1220835.1220885CrossRefGoogle Scholar
  6. 6.
    Scharnhorst, A., Börner, K., van den Besselaar, P. (eds.): Models of Science Dynamics Encounters Between Complexity Theory and Information Sciences. Springer, Berlin (2012)Google Scholar
  7. 7.
    White, H.D., Lin, X., Buzydlowski, J.W., Chen, C.: User-controlled mapping of significant literatures. Proceedings of the National Academy of Sciences 101(suppl. 1), 5297–5302 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philipp Mayr
    • 1
  • Andrea Scharnhorst
    • 1
  • Birger Larsen
    • 1
  • Philipp Schaer
    • 1
  • Peter Mutschke
    • 1
  1. 1.GESIS – Leibniz Institute for the Social SciencesCologneGermany

Personalised recommendations