CroSeR: Cross-language Semantic Retrieval of Open Government Data

  • Fedelucio Narducci
  • Matteo Palmonari
  • Giovanni Semeraro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)


CroSer (Cross-language Semantic Retrieval) is an ir system able to discover links between e-gov services described in different languages. CroSeR supports public administrators to link their own source catalogs of e-gov services described in any language to a target catalog whose services are described in English and are available in the Linked Open Data (lod) cloud. Our system is based on a cross-language semantic matching method that i) translates service labels in English using a machine translation tool, ii) extracts a Wikipedia-based semantic representation from the translated service labels using Explicit Semantic Analysis (esa), iii) evaluates the similarity between two services using their Wikipedia-based representations. The user selects a service in a source catalog and exploits the ranked list of matches suggested by CroSeR to establish a relation (of type narrower, equivalent, or broader match) with other services in the English catalog. The method is independent from the language adopted in the source catalog and it does not assume the availability of information about the services other than very short text descriptions used as service labels. CroSeR is a web application accessible via .


Candidate Service Link Open Data Target Service Ontology Match Source Catalog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. IJSWIS 5(3), 1–22 (2009)Google Scholar
  2. 2.
    Ding, L., Peristeras, V., Hausenblas, M.: Linked Open Government Data. IEEE Intelligent Systems 27(3), 11–15 (2012)CrossRefGoogle Scholar
  3. 3.
    Knoth, P., Zilka, L., Zdrahal, Z.: Using Explicit Semantic Analysis for Cross-Lingual Link Discovery. In: 5th Int.l Workshop on Cross Lingual Information Access (2011)Google Scholar
  4. 4.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on the Web of Documents. In: I-SEMANTICS 2010, pp. 1–8. ACM (2011)Google Scholar
  5. 5.
    Narducci, F., Palmonari, M., Semeraro, G.: Cross-Language Semantic Retrieval and Linking of E-Gov Services. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 130–145. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval using only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 58–65. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Shvaiko, P., Euzenat, J.: Ontology Matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  8. 8.
    Sorg, P., Cimiano, P.: Exploiting Wikipedia for Cross-lingual and Multilingual Information Retrieval. DKE 74, 26–45 (2012)CrossRefGoogle Scholar
  9. 9.
    Spohr, D., Hollink, L., Cimiano, P.: A Machine Learning approach to Multilingual and Cross-lingual Ontology Matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 665–680. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fedelucio Narducci
    • 1
  • Matteo Palmonari
    • 1
  • Giovanni Semeraro
    • 2
  1. 1.Department of Computer Science, Systems and CommunicationUniversity of Milano-BicoccaItaly
  2. 2.Department of Computer ScienceUniversity of Bari Aldo MoroItaly

Personalised recommendations