A Language Modeling Approach to Personalized Search Based on Users’ Microblog Behavior

  • Arjumand Younus
  • Colm O’Riordan
  • Gabriella Pasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)


Personalized Web search offers a promising solution to the task of user-tailored information-seeking, and particularly in cases where the same query may represent diverse information needs. A significant component of any Web search personalization model is the means with which to model a user’s interests and preferences to build what is termed as a user profile. This work explores the use of the Twitter microblog network as a source of user profile construction for Web search personalization. We propose a statistical language modeling approach taking into account various features of a user’s Twitter network. The richness of the Web search personalization model leads to significant performance improvements in retrieval accuracy. Furthermore, the model is extended to include a similarity measure which further improves search engine performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Semantic enrichment of twitter posts for user profile construction on the social web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 375–389. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Harpale, A., Yang, Y., Gopal, S., He, D., Yue, Z.: Citedata: a new multi-faceted dataset for evaluating personalized search performance. In: CIKM 2010, pp. 549–558 (2010)Google Scholar
  3. 3.
    Matthijs, N., Radlinski, F.: Personalizing web search using long term browsing history. In: WSDM 2011, pp. 25–34 (2011)Google Scholar
  4. 4.
    Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search accuracy. In: KDD 2006, pp. 718–723 (2006)Google Scholar
  6. 6.
    Teevan, J., Dumais, S.T., Horvitz, E.: Potential for personalization. ACM Trans. Comput.-Hum. Interact. 17(1), 4:1–4:31 (2010)Google Scholar
  7. 7.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Wang, Q., Jin, H.: Exploring online social activities for adaptive search personalization. In: CIKM 2010, pp. 999–1008 (2010)Google Scholar
  9. 9.
    Younus, A., O’Riordan, C., Pasi, G.: Predictors of users’ willingness to personalize web search. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 459–470. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Arjumand Younus
    • 1
    • 2
  • Colm O’Riordan
    • 1
  • Gabriella Pasi
    • 2
  1. 1.Computational Intelligence Research Group, Information TechnologyNational University of IrelandGalwayIreland
  2. 2.Information Retrieval Lab, Informatics, Systems and CommunicationUniversity of Milan BicoccaMilanItaly

Personalised recommendations