Multi-evidence User Group Discovery in Professional Image Search

  • Theodora Tsikrika
  • Christos Diou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)

Abstract

This work evaluates the combination of multiple evidence for discovering groups of users with similar interests. User groups are created by analysing the search logs recorded for a sample of 149 users of a professional image search engine in conjunction with the textual and visual features of the clicked images, and evaluated by exploiting their topical classification. The results indicate that the discovered user groups are meaningful and that combining textual and visual features improves the homogeneity of the user groups compared to each individual feature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, P.N., Radlinski, F., White, R.W., Yilmaz, E.: Inferring and using location metadata to personalize web search. In: Ma, W.Y., Nie, J.Y., Baeza-Yates, R.A., Chua, T.S., Croft, W.B. (eds.) SIGIR 2011, pp. 135–144. ACM (2011)Google Scholar
  2. 2.
    Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., Sontag, D.: Personalizing web search results by reading level. In: Macdonald, C., Ounis, I., Ruthven, I. (eds.) CIKM 2011, pp. 403–412. ACM (2011)Google Scholar
  3. 3.
    Gayo-Avello, D.: A survey on session detection methods in query logs and a proposal for future evaluation. Information Sciences 179(12), 1822–1843 (2009)CrossRefGoogle Scholar
  4. 4.
    Henrikson, J.: Completeness and total boundedness of the Hausdorff metric. MIT Undergraduate Journal of Mathematics 1, 69–80 (1999)Google Scholar
  5. 5.
    Kharitonov, E., Serdyukov, P.: Demographic context in web search re-ranking. In: Wen Chen, X., Lebanon, G., Wang, H., Zaki, M.J. (eds.) CIKM 2012, pp. 2555–2558. ACM (2012)Google Scholar
  6. 6.
    Kharitonov, E., Serdyukov, P.: Gender-aware re-ranking. In: Hersh, W.R., Callan, J., Maarek, Y., Sanderson, M. (eds.) SIGIR 2012, pp. 1081–1082. ACM (2012)Google Scholar
  7. 7.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman (2005)Google Scholar
  8. 8.
    Teevan, J., Morris, M.R., Bush, S.: Discovering and using groups to improve personalized search. In: Baeza-Yates, R.A., Boldi, P., Ribeiro-Neto, B.A., Cambazoglu, B.B. (eds.) WSDM 2009, pp. 15–24. ACM (2009)Google Scholar
  9. 9.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. PAMI 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  10. 10.
    Weber, I., Castillo, C.: The demographics of web search. In: Crestani, F., Marchand-Maillet, S., Chen, H.-H., Efthimiadis, E.N., Savoy, J. (eds.) SIGIR 2010, pp. 523–530. ACM (2010)Google Scholar
  11. 11.
    Weber, I., Jaimes, A.: Who uses web search for what: and how. In: King, I., Nejdl, W., Li, H. (eds.) WSDM 2011, pp. 15–24. ACM (2011)Google Scholar
  12. 12.
    Zeimpekis, D., Gallopoulos, E.: TMG: A MATLAB toolbox for generating term-document matrices from text collections. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data:Recent Advances in Clustering, pp. 187–210. Springer (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Theodora Tsikrika
    • 1
  • Christos Diou
    • 2
  1. 1.Information Technologies Institute, CERTHThessalonikiGreece
  2. 2.ECE DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations