Logic and Complexity in Cognitive Science

  • Alistair M. C. Isaac
  • Jakub Szymanik
  • Rineke Verbrugge
Part of the Outstanding Contributions to Logic book series (OCTR, volume 5)


This chapter surveys the use of logic and computational complexity theory in cognitive science. We emphasize in particular the role played by logic in bridging the gaps between Marr’s three levels: representation theorems for non-monotonic logics resolve algorithmic/implementation debates, while complexity theory probes the relationship between computational task analysis and algorithms. We argue that the computational perspective allows feedback from empirical results to guide the development of increasingly subtle computational models. We defend this perspective via a survey of the role of logic in several classic problems in cognitive science (the Wason selection task, the frame problem, the connectionism/symbolic systems debate) before looking in more detail at case studies involving quantifier processing and social cognition. In these examples, models developed by Johan van Benthem have been supplemented with complexity analysis to drive successful programs of empirical research.


Logic Cognitive science Computational complexity Modeling Experiments 



We would like to thank Alexandru Baltag, Johan van Benthem, Peter Gärdenfors, Iris van Rooij, and Keith Stenning for many comments and suggestions. The first author would also like to thank Douwe Kiela and Thomas Icard for helpful discussions of this material; he was supported by NSF grant 1028130. The second author was supported by NWO Vici grant 277-80-001 and NWO Veni grant 639-021-232. The third author was supported by NWO Vici grant 277-80-001.


  1. 1.
    Anderson JR (1990) The adaptive character of thought: Studies in cognition. Lawrence Erlbaum, MahwahGoogle Scholar
  2. 2.
    Anderson JR, Lebiere C (1998) The atomic components of thought. Lawrence Erlbaum, MahwahGoogle Scholar
  3. 3.
    Arora S, Barak B (2009) Computational complexity: A modern approach (1st edn). Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Ausiello G, Crescenzi P, Kann V, Gambosi G, Marchetti-Spaccamela A, Protasi M (2000) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, BerlinGoogle Scholar
  5. 5.
    Balkenius C, Gärdenfors P (1991) Nonmonotonic inference in neural networks. In: Allen JA, Fikes R, Sandewall E (eds) Proceedings of the second international conference on knowledge representation and reasoning. Morgan Kaufmann, San Mateo pp 32–39Google Scholar
  6. 6.
    Benacerraf P (1967) God, the devil, and Gödel. Monist 51:9–32CrossRefGoogle Scholar
  7. 7.
    van Benthem J (1986) Essays in logical semantics. Reidel, DordrechtGoogle Scholar
  8. 8.
    van Benthem J (1991) Language in action: Categories, lambdas and dynamic logic. North-Holland, Amsterdam (paperback edition 1995, MIT Press, Cambridge)Google Scholar
  9. 9.
    van Benthem J (2002) Extensive games as process models. J Logic Lang Inform 11(3):289–313CrossRefGoogle Scholar
  10. 10.
    van Benthem J (2007) Cognition as interaction. In: Proceedings of symposium on cognitive foundations of interpretation. KNAW, Amsterdam, pp 27–38Google Scholar
  11. 11.
    van Benthem J (2008) Logic and reasoning: Do the facts matter? Stud Logica 88(1):67–84CrossRefGoogle Scholar
  12. 12.
    van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    van Benthem J, Gerbrandy J, Hoshi T, Pacuit E (2009) Merging frameworks for interaction. J Philos Logic 38:491–526CrossRefGoogle Scholar
  14. 14.
    Blutner R (2004) Nonmonotonic inferences and neural networks. Synthese 142:143–174CrossRefGoogle Scholar
  15. 15.
    Bowles S, Gintis H (2011) A cooperative species: Human reciprocity and its evolution. Princeton University Press, PrincetonGoogle Scholar
  16. 16.
    Cadoli M, Schaerf M (1993) A survey of complexity results for nonmonotonic logics. J Log Program 17(2/3&4):127–160Google Scholar
  17. 17.
    Camerer C (2003) Behavioral game theory: Experiments in strategic interaction. Princeton University Press, New JerseyGoogle Scholar
  18. 18.
    Chalmers D (1990) Why Fodor and Pylyshyn were wrong: The simplest refutation. In: Proceedings of the twelfth annual conference of the cognitive science society. pp 340–347Google Scholar
  19. 19.
    Chater N, Tenenbaum J, Yuille A (2006) Probabilistic models of cognition: Where next? Trends Cogn Sci 10(7):292–293CrossRefGoogle Scholar
  20. 20.
    Cheng PW, Holyoak KJ, Nisbett RE, Oliver LM (1986) Pragmatic versus syntactic approaches to training deductive reasoning. Cogn Psychol 18:293–328CrossRefGoogle Scholar
  21. 21.
    Chomsky N (1957) Syntactic structures. Mouton de Gruyter, The HagueGoogle Scholar
  22. 22.
    Clark A (1993) Associative engines. Bradford Books, CambridgeGoogle Scholar
  23. 23.
    Clark A (2011) Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Clark KL (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and databases. Plenum Press, New YorkGoogle Scholar
  25. 25.
    Cobham J (1965) The intrinsic computational difficulty of functions. In: Proceedings of the 1964 international congress for logic, methodology, and philosophy of science. North-Holland, Amsterdam, pp 24–30Google Scholar
  26. 26.
    Cook SA (1971) The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the third annual ACM symposium on theory of computing. ACM Press, New York pp 151–158Google Scholar
  27. 27.
    Cooper BS (2003) Computability theory: CRC mathematics series. Chapman and Hall/CRC, LondonGoogle Scholar
  28. 28.
    Cosmides L (1989) The logic of social exchange: Has natural selection shaped how humans reason? studies with the Wason selection task. Cognition 31:187–276CrossRefGoogle Scholar
  29. 29.
    Cosmides L, Tooby J (1992) Cognitive adaptations for social exchange. In: Barkow J, Cosmides L, Tooby J (eds) The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press, Oxford pp 163–228Google Scholar
  30. 30.
    d’Avila Garcez AS, Lamb LC, Gabbay DM (2002) Neural-symbolic learning systems: foundations and applications. Springer, LondonGoogle Scholar
  31. 31.
    Dégremont C, Kurzen L, Szymanik J (2014) Exploring the tractability border in epistemic tasks. Synthese 191(3):371–408Google Scholar
  32. 32.
    Dehaene S (1999) The number sense: How the mind creates mathematics. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Dennett DC (1984) Cognitive wheels: The frame problem of AI. In: Hookway C (ed) Minds, machines and evolution: Philosophical studies. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    van Ditmarsch H, van der Hoek W, Kooi B (2007) Dynamic epistemic logic. Springer, DordrechtGoogle Scholar
  35. 35.
    Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449–467CrossRefGoogle Scholar
  36. 36.
    van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of theoretical computer science. MIT Press, Cambridge pp 1–66Google Scholar
  37. 37.
    Fagin R (1974) Generalized first-order spectra and polynomial time recognizable sets. In: Karp R (ed) Proceedings of SIAM—AMS on complexity of computation, vol 7. American Mathematical Society pp 43–73Google Scholar
  38. 38.
    Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, CambridgeGoogle Scholar
  39. 39.
    Feferman S (1995) Penrose’s Gödelian argument. Psyche 2, online publication, available at
  40. 40.
    Fitting M (2002) Fixpoint semantics for logic programming: A survey. Theoret Comput Sci 278(1–2):25–51CrossRefGoogle Scholar
  41. 41.
    Flobbe L, Verbrugge R, Hendriks P, Krämer I (2008) Children’s application of theory of mind in reasoning and language. J Logic Lang Inform 17(4):417–442CrossRefGoogle Scholar
  42. 42.
    Fodor JA (1983) The modularity of mind: An essay on faculty psychology. MIT Press, CambridgeGoogle Scholar
  43. 43.
    Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28:3–71CrossRefGoogle Scholar
  44. 44.
    Freeman WJ (2000) How brains make up their minds. Columbia University Press, New YorkGoogle Scholar
  45. 45.
    Freeman WJ (1972) Waves, pulses and the theory of neural masses. Prog Theor Biol 2:87–165CrossRefGoogle Scholar
  46. 46.
    Frixione M (2001) Tractable competence. Mind Mach 11(3):379–397CrossRefGoogle Scholar
  47. 47.
    Gärdenfors P (2000) Conceptual spaces: The geometry of thought. MIT Press, CambridgeGoogle Scholar
  48. 48.
    Garey MR, Johnson DS (1979) Computers and intractability. W. H. Freeman and Co., San FranciscoGoogle Scholar
  49. 49.
    van Gelder T (1990) Compositionality: A connectionist variation on a classical theme. Cogn Sci 14:355–364CrossRefGoogle Scholar
  50. 50.
    van Gelder T (1991) Classical questions, radical answers: Connectionism and the structure of mental representations. In: Horgan T, Tienson J (eds) connectionism and the philosophy of mind. Kluwer Academic Publishers, Dordrecht pp 355–381Google Scholar
  51. 51.
    van Gelder T (1995) What might cognition be, if not computation? J Philos 92(7):345–381CrossRefGoogle Scholar
  52. 52.
    van Gelder T (1998) The dynamical hypothesis in cognitive science. Behav Brain Sci 21(5):615–628Google Scholar
  53. 53.
    Ghosh S, Meijering B, Verbrugge R (2010) Logic meets cognition: Empirical reasoning in games. In: Boissier O, others (eds) MALLOW, CEUR Workshop Proceedings, vol 627Google Scholar
  54. 54.
    Ghosh S, Meijering B, Verbrugge R (2014), Strategic reasoning: Building cognitive models from logical formulas. J Logic Lang Inform 23:1–29Google Scholar
  55. 55.
    Gierasimczuk N, Szymanik J (2011a) Invariance properties of quantifiers and multiagent information exchange. In: Kanazawa M, Kornai A, Kracht M, Seki H (eds) Proceedings of 12th biennial conference on the mathematics of language (MOL 12, Nara, Japan, September 6–8, 2011), vol 6878. Springer, Berlin pp 72–89Google Scholar
  56. 56.
    Gierasimczuk N, Szymanik J (2011b) A note on a generalization of the muddy children puzzle. In: Apt KR (ed) Proceedings of the 13th conference on theoretical aspects of rationality and knowledge. ACM Digital Library pp 257–264Google Scholar
  57. 57.
    Gierasimczuk N, van der Maas H, Raijmakers M (2013) Logical and psychological analysis of deductive Mastermind. J Logic Lang Inform 22(3):297–314Google Scholar
  58. 58.
    Gneezy U, Rustichini A, Vostroknutov A (2010) Experience and insight in the race game. J Econ Behav Organ 75(2):144–155CrossRefGoogle Scholar
  59. 59.
    Gold EM (1967) Language identification in the limit. Inf Control 10:447–474CrossRefGoogle Scholar
  60. 60.
    Griggs RA, Cox JR (1982) The elusive thematic-materials effect in Wason’s selection task. Br J Psychol 73:407–420CrossRefGoogle Scholar
  61. 61.
    Gurevich Y (1993) Feasible functions. London Math Soc Newsl 10(206):6–7Google Scholar
  62. 62.
    Hawes DR, Vostroknutov A, Rustichini A (2012) Experience and abstract reasoning in learning backward induction. Front Neurosci 6(23)Google Scholar
  63. 63.
    Hedden T, Zhang J (2002) What do you think I think you think? Strategic reasoning in matrix games. Cognition 85(1):1–36CrossRefGoogle Scholar
  64. 64.
    Hitzler P, Hölldobler S, Seda AK (2004) Logic programs and connectionist networks. J Appl Logic 2(3):245–272CrossRefGoogle Scholar
  65. 65.
    Hölldobler S, Kalinke Y (1994) Toward a new massively parallel computational model for logic programming. In: Proceedings of workshop on combining symbolic and connectionist processing. ECAI-94, AmsterdamGoogle Scholar
  66. 66.
    Hoshi T (2010) Merging DEL and ETL. J Logic Lang Inform 19:413–430CrossRefGoogle Scholar
  67. 67.
    Hubbard E, Diester I, Cantlon J, Ansari D, van Opstal F, Troiani V (2008) The evolution of numerical cognition: From number neurons to linguistic quantifiers. J Neurosci 28(46):11,819–11,824Google Scholar
  68. 68.
    Immerman N (1999) Descriptive complexity. Springer Verlag, BerlinGoogle Scholar
  69. 69.
    Isaac A, Hoshi T (2011) Synchronizing diachronic uncertainty. J Logic Lang Info 20:137–159Google Scholar
  70. 70.
    Johnson-Laird PN, Legrenzi P, Legrenzi MS (1972) Reasoning and a sense of reality. Br J Psychol 63:395–400CrossRefGoogle Scholar
  71. 71.
    Kraus S, Lehmann DJ, Magidor M (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artif Intell 44(1–2):167–207CrossRefGoogle Scholar
  72. 72.
    Kugel P (1986) Thinking may be more than computing. Cognition 22(2):137–198CrossRefGoogle Scholar
  73. 73.
    Leitgeb H (2003) Nonmonotonic reasoning by inhibition nets II. Int J Uncertainty, Fuzziness and Knowl Based Syst 11(2 (Supplement)):105–135Google Scholar
  74. 74.
    Leitgeb H (2001) Nonmonotonic reasoning by inhibition nets. Artif Intell 128(1–2):161–201CrossRefGoogle Scholar
  75. 75.
    Leitgeb H (2005) Interpreted dynamical systems and qualitative laws: From neural networks to evolutionary systems. Synthese 146:189–202CrossRefGoogle Scholar
  76. 76.
    Levesque HJ (1988) Logic and the complexity of reasoning. J Philos Logic 17(4):355–389CrossRefGoogle Scholar
  77. 77.
    Li M, Vitányi P (2008) An introduction to Kolmogorov complexity and its applications (3rd edn). Springer, BerlinGoogle Scholar
  78. 78.
    Lucas JR (1961) Minds, machines and Gödel. Philosophy 36(137):112–127CrossRefGoogle Scholar
  79. 79.
    Marr D (1983) Vision: A computational investigation into the human representation and processing visual information. W.H. Freeman, San FranciscoGoogle Scholar
  80. 80.
    McCarthy J (1980) Circumscription–a form of non-monotonic reasoning. Artif Intell 13(1–2):27–39CrossRefGoogle Scholar
  81. 81.
    McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Michie D, Meltzer B (eds) Machine Intelligence, vol 4. Edinburgh University Press, Edinburgh pp 463–502Google Scholar
  82. 82.
    McCulloch WS, Pitts WH (1943) A logical calculus immanent in nervous activity. Bull Math Biophys 5:115–133CrossRefGoogle Scholar
  83. 83.
    McMillan CT, Clark R, Moore P, Devita C, Grossman M (2005) Neural basis for generalized quantifier comprehension. Neuropsychologia 43:1729–1737CrossRefGoogle Scholar
  84. 84.
    McMillan CT, Clark R, Moore P, Grossman M (2006) Quantifier comprehension in corticobasal degeneration. Brain Cogn 65:250–260CrossRefGoogle Scholar
  85. 85.
    Meijering B, van Maanen L, Verbrugge R (2010) The facilitative effect of context on second-order social reasoning. In: Catrambone R, Ohlsson S (eds) Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin pp 1423–1428Google Scholar
  86. 86.
    Meijering B, van Rijn H, Taatgen NA, Verbrugge R (2012) What eye movements can tell about theory of mind in a strategic game. PLoS ONE 7(9):e45,961Google Scholar
  87. 87.
    Meijering B, van Rijn H, Verbrugge R (2011) I do know what you think I think: Second-order theory of mind in strategic games is not that difficult. In: Proceedings of the 33rd annual meeting of the cognitive science society, Cognitive Science Society, BostonGoogle Scholar
  88. 88.
    Mostowski M (1998) Computational semantics for monadic quantifiers. J Appl Non-Class Log 8:107–121CrossRefGoogle Scholar
  89. 89.
    Mostowski M, Wojtyniak D (2004) Computational complexity of the semantics of some natural language constructions. Ann Pure Appl Logic 127(1–3):219–227CrossRefGoogle Scholar
  90. 90.
    Newell A (1981) The knowledge level: Presidential address. AI Mag 2(2):1–20Google Scholar
  91. 91.
    Pagin P (2012) Communication and the complexity of semantics. In: Werning M, Hinzen W, Machery E (eds) Oxford handbook of compositionality. Oxford University Press, OxfordGoogle Scholar
  92. 92.
    Papadimitriou CH (1993) Computational complexity. Addison Wesley, BostonGoogle Scholar
  93. 93.
    Penrose R (1994) Shadows of the mind: A search for the missing science of consciousness. Oxford University Press, New YorkGoogle Scholar
  94. 94.
    Pinkas G (1995) Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artif Intell 77:203–247CrossRefGoogle Scholar
  95. 95.
    Pratt-Hartmann I (2004) Fragments of language. J Logic Lang Inform 13(2):207–223CrossRefGoogle Scholar
  96. 96.
    Pudlák P (1999) A note on applicability of the incompleteness theorem to human mind. Ann Pure Appl Logic 96(1–3):335–342CrossRefGoogle Scholar
  97. 97.
    Raijmakers ME, Mandell DJ, van Es SE, Counihan M (2014) Children’s strategy use when playing strategic games. Synthese 191:355–370Google Scholar
  98. 98.
    Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132CrossRefGoogle Scholar
  99. 99.
    Ristad ES (1993) The Language complexity game (Artificial intelligence). MIT Press, Cambridge, MA,Google Scholar
  100. 100.
    van Rooij I, Stege U, Kadlec H (2005) Sources of complexity in subset choice. J Math Psychol 49(2):160–187Google Scholar
  101. 101.
    van Rooij I, Wareham T (2007) Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. Comput J 51(3):385–404CrossRefGoogle Scholar
  102. 102.
    van Rooij I (2008) The tractable cognition thesis. Cognitive Sci 32(6):939–984CrossRefGoogle Scholar
  103. 103.
    Sandler U, Tsitolovsky L (2008) Neural cell behavior and fuzzy logic. Springer, New YorkGoogle Scholar
  104. 104.
    Schlotterbeck F, Bott O (2013) Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational antecedents. J Logic Lang Inform 22(4):363–390Google Scholar
  105. 105.
    Shanahan M (1997) Solving the frame problem: A mathematical investigation of the common sense law of inertia. MIT Press, CambridgeGoogle Scholar
  106. 106.
    Shoham Y (1987) A semantical approach to nonmonotonic logics. In: Proceedings of the 2nd symposium on logic in computer science. CEUR Workshop Proceedings pp 275–279Google Scholar
  107. 107.
    Siegelmann HT, Sontag ED (1994) Analog computation via neural networks. Theoret Comput Sci 131:331–360CrossRefGoogle Scholar
  108. 108.
    Siegelmann HT (1995) Computation beyond the Turing limit. Science 268:545–548CrossRefGoogle Scholar
  109. 109.
    Siegelmann HT (2003) Neural and super-Turing computing. Mind Mach 13:103–114CrossRefGoogle Scholar
  110. 110.
    Simon HA (1957) Models of man: Social and rational. Wiley, New YorkGoogle Scholar
  111. 111.
    Skyrms B (1996) The evolution of the social contract. Cambridge University Press, New YorkGoogle Scholar
  112. 112.
    Skyrms B (2004) The stag hunt and the evolution of social structure. Cambridge University Press, New YorkGoogle Scholar
  113. 113.
    Smolensky P (1987) Connectionism and cognitive architecture: A critical analysis. Southern J Philos 26(supplement):137–163Google Scholar
  114. 114.
    Smolensky P (1988) On the proper treatment of connectionism. Behav Brain Sci 11:1–74CrossRefGoogle Scholar
  115. 115.
    Spaan E (1993) Complexity of modal logics. Ph.D. thesis, Universiteit van Amsterdam, AmsterdamGoogle Scholar
  116. 116.
    Steinert-Threlkeld S, Icard TF (2013) Iterating semantic automata. Linguist Philos 36:151–173Google Scholar
  117. 117.
    Stenning K, van Lambalgen M (2008) Human reasoning and cognitive science. MIT Press, CambridgeGoogle Scholar
  118. 118.
    Sternberg RJ (2002) Cognitive psychology. Wadsworth Publishing, StamfordGoogle Scholar
  119. 119.
    Syropoulos A (2008) Hypercomputation: Computing beyond the Church-Turing barrier (Monographs in computer science). Springer, BerlinGoogle Scholar
  120. 120.
    Szymanik J (2009) Quantifiers in time and space. Computational complexity of generalized quantifiers in natural language. Ph.D. thesis, University of Amsterdam, AmsterdamGoogle Scholar
  121. 121.
    Szymanik J (2007) A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia 45:2158–2160CrossRefGoogle Scholar
  122. 122.
    Szymanik J (2010) Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguist Philos 33(3):215–250CrossRefGoogle Scholar
  123. 123.
    Szymanik J, Zajenkowski M (2010a) Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Sci 34(3):521–532CrossRefGoogle Scholar
  124. 124.
    Szymanik J, Zajenkowski M (2011) Contribution of working memory in parity and proportional judgments. Belgian J Linguist 25(1):176–194CrossRefGoogle Scholar
  125. 125.
    Szymanik J, Meijering B, Verbrugge R (2013a) Using intrinsic complexity of turn-taking games to predict participants’ reaction times. In: Proceedings of the 35th annual conference of the cognitive science society. Cognitive Science Society, AustinGoogle Scholar
  126. 126.
    Szymanik J, Steinert-Threlkeld S, Zajenkowski M, Icard TF (2013b) Automata and complexity in multiple-quantifier sentence verification. In: Proceedings of the 12th International Conference on Cognitive Modeling, R. West, T. Stewart (eds.), Ottawa, Carleton University, 2013Google Scholar
  127. 127.
    Szymanik J, Verbrugge R (eds) (2013) Special issue of Journal of Logic, Language, and Information on Logic and Cognition, vol 22, Issue 3, 4Google Scholar
  128. 128.
    Szymanik J, Zajenkowski M (2010b) Quantifiers and working memory. In: Aloni M, Schulz K (eds) Amsterdam colloquium 2009, LNAI, vol 6042. Springer, Berlin, pp 456–464Google Scholar
  129. 129.
    Tenenbaum J, Kemp C, Griffiths T, Goodman N (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–1285CrossRefGoogle Scholar
  130. 130.
    Thorne C (2012) Studying the distribution of fragments of English using deep semantic annotation. In: Proceedings of the ISA8 workshopGoogle Scholar
  131. 131.
    Tomaszewicz B (2012) Quantifiers and visual cognition. J Logic Lang Inform 22(3):335–356Google Scholar
  132. 132.
    Tsotsos J (1990) Analyzing vision at the complexity level. Behav Brain Sci 13(3):423–469CrossRefGoogle Scholar
  133. 133.
    Tversky A, Kahneman D (1983) Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol Rev 90(4):293–315CrossRefGoogle Scholar
  134. 134.
    Verbrugge R, Mol L (2008) Learning to apply theory of mind. J Logic Lang Inform 17(4):489–511CrossRefGoogle Scholar
  135. 135.
    Verbrugge R (2009) Logic and social cognition: The facts matter, and so do computational models. J Philos Logic 38(6):649–680CrossRefGoogle Scholar
  136. 136.
    Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci 25(46):10786–10795Google Scholar
  137. 137.
    Wason PC (1968) Reasoning about a rule. Q J Exp Psychol 20:273–281CrossRefGoogle Scholar
  138. 138.
    Wason PC, Shapiro D (1971) Natural and contrived experience in a reasoning problem. Q J Exp Psychol 23:63–71CrossRefGoogle Scholar
  139. 139.
    de Weerd H, Verbrugge R, Verheij B (2013) How much does it help to know what she knows you know? An agent-based simulation study. Artif Intell 199–200: 67–92Google Scholar
  140. 140.
    Zajenkowski M, Styła R, Szymanik J (2011) A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. J Commun Disord 44(6):595–600CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of EdinburghEdinburghScotland
  2. 2.Institute for Logic, Language, and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Institute of Artificial IntelligenceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations