Advertisement

When are Two Arguments the Same? Equivalence in Abstract Argumentation

  • Dov Gabbay
  • Davide Grossi
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 5)

Abstract

In abstract argumentation arguments are just points in a network of attacks: they do not hold premisses, conclusions or internal structure. So is there a meaningful way in which two arguments, belonging possibly to different attack graphs, can be said to be equivalent? The paper argues for a positive answer and, interfacing methods from modal logic, the theory of argument games and the equational approach to argumentation, puts forth and explores a formal theory of equivalence for abstract argumentation.

Keywords

Abstract argumentation Modal logic Bisimulation Argument games Equational approaches 

Notes

Acknowledgments

We would like to thank Johan van Benthem for the many useful suggestions that helped us shape this last version of the paper.

References

  1. 1.
    Atkinson K, Bench-Capon T (2007) Argumentation and standards of proof. In: Proceedings of the 11th international conference on artificial intelligence and law (ICAIL’07), ACM, pp 107–116Google Scholar
  2. 2.
    Baroni P, Giacomin M (2009) Semantics of abstract argument systems. In: Rahwan I, Simari GR (eds) Argumentation in artifical intelligence, Springer, DordrechtGoogle Scholar
  3. 3.
    Baroni P, Caminada M, Giacomin M (2011) An introduction to argumentation semantics. Knowl Eng Rev 26(4):365–410CrossRefGoogle Scholar
  4. 4.
    van Benthem J (1983) Modal logic and classical logic. Monographs in philosophical logic and formal Linguistics, Bibliopolis, BerkeleyGoogle Scholar
  5. 5.
    van Benthem J (2002) Extensive games as process models. J Logic Lang Inform 11:289–313CrossRefGoogle Scholar
  6. 6.
    van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    van Benthem J (2012) The nets of reason. Argument Comput 3(2–3):83–86CrossRefGoogle Scholar
  8. 8.
    van Benthem J (2014) Logic in games. MIT Press, Cambridge, MAGoogle Scholar
  9. 9.
    Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Caminada M (2006) On the issue of reinstatement in argumentation. In: Fischer M, van der Hoek W, Konev B, Lisitsa A (eds) Logics in artificial intelligence. Proceedings of JELIA 2006, pp 111–123Google Scholar
  11. 11.
    Caminada M, Gabbay D (2009) A logical account of formal argumentation. Studia Logica 93(2):109–145CrossRefGoogle Scholar
  12. 12.
    Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Dung PM (1994) Logic programming as dialogue games. Technical report. Division of computer science, Asian Institute of TechnologyGoogle Scholar
  14. 14.
    Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77(2):321–358CrossRefGoogle Scholar
  15. 15.
    Gabbay D (2011a) Introducing equational semantics for argumentation networks. In: Liu W (ed) Proceedings of ECSQARU 2011, no. 6717 in LNAI, pp 19–35Google Scholar
  16. 16.
    Gabbay D (2011b) Sampling logic and argumentation networks: a manifesto (vol 2). In: Gupta A, van Benthem J (eds) Logic and philosophy today, Studies in logic, vol 30, College Publications, pp 231–250Google Scholar
  17. 17.
    Gabbay D (2012) An equational approach to argumentation networks. Argument Comput 3 (2–3):87–142Google Scholar
  18. 18.
    Gabbay D (2013) Meta-Logical investigations in argumentation networks. College Publications, LondonGoogle Scholar
  19. 19.
    Gratie C, Florea AM, Meyer J (2012) Full hybrid mu-calculus, its bisimulation invariance and application to argumentation. Proc COMMA 2012:181–194Google Scholar
  20. 20.
    Grossi D (2009) Doing argumentation theory in modal logic. ILLC Prepublication Series PP-2009–24, Institute for Logic, Language and ComputationGoogle Scholar
  21. 21.
    Grossi D (2010) On the logic of argumentation theory. In: van der Hoek W, Kaminka G, Lespérance Y, Sen S (eds) Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS 2010), IFAAMAS, pp 409–416Google Scholar
  22. 22.
    Grossi D (2011) Argumentation theory in the view of modal logic. In: McBurney P, Rahwan I (eds) Post-proceedings of the 7th international workshop on argumentation in Multi-Agent systems, no. 6614 in LNAI, pp 190–208Google Scholar
  23. 23.
    Kanamori A (1994) The Higher Infinite. Springer, DordrechtGoogle Scholar
  24. 24.
    Modgil S, Caminada M (2009) Proof theories and algorithms for abstract argumentation frameworks. In: Rahwan I, Simari G (ed) Argumentation in AI, Springer, pp 105–132Google Scholar
  25. 25.
    Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, CambridgeGoogle Scholar
  26. 26.
    Parikh R (2002) Social software. Synthese 132(3):187–211CrossRefGoogle Scholar
  27. 27.
    Pollock JL (1987) Defeasible reasoning. Cogn Sci 11:481–518CrossRefGoogle Scholar
  28. 28.
    Pollock JL (1991) A theory of defeasible reasoning. Int J Intell Syst 6(1):33–54CrossRefGoogle Scholar
  29. 29.
    Prakken H (2009) Models of persuasion dialogue. In: Rahwan I, Simari G (eds) Argumentation in Artificial Intelligence, chap 14, Springer, DordrechtGoogle Scholar
  30. 30.
    Toulmin S (1958) The uses of argument. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Venema Y (2008) Lectures on the modal \(\mu \)-calculus. Renmin University, BeijingGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.King’s College LondonLondonUK
  2. 2.Bar Ilan UniversityRamat GanIsrael
  3. 3.University of LuxembourgLuxembourgLuxembourg
  4. 4.University of LiverpoolLiverpoolUK

Personalised recommendations